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In this work, we build a machine learning model to predict the vibrational Helmholtz free energy of
perovskite compounds. The datasets and codes used in our work are provided in github repository ML-
FreeEnergyPerorskites

Link: https://github.com/krishnarajmayya/MLFreeEnergyPerorskites.git

1 Virtual design space

Perovskite compounds have very wast compositional space with a large percentage of elements in the periodic
table eligible to take one of the three positions in ABX3 stoichiometry. Figure 1 shows the design space used
in this work to select the perovskite candidates for machine learning and prediction of stability. Many of the

elements can occupy either A or B sites in ABX3 structure (indicated in bi-color in the figure).

2 Feature correlation

Pearson correlation scores of the elemental features with each other are checked to remove redundancy by
dropping the features showing a high correlation score (> 4 0.9). The heat map showing the correlation of

the descriptors for A and X site elements are given in Figure 2.
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Figure 1: Design space of the perovskite compounds used in this study. The color scheme in given inside.
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Figure 2: Correlation heat map plotted for all the elemental descriptors of the elements at A and X positions.
Descriptors with a correlation score of > +0.9 are concluded to be strongly correlated (symbols are in their
usual meaning as given in Table 1 of the main paper).
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Figure 3: R? scores of different ML algorithms built using top 40 features for coefficient A, B, and C of free
energy polynomial fit.

3 ML algorithms

To build the ML models, various algorithms implemented in the Scikit Learn package are used viz. Least
Absolute Shrinkage and Selection Operator regression (LASSO), Random forest regression (RF), and Gaus-
sian process regression (GPR) using the radial-basis function (RBF) along with white kernel and Rational
quadratic kernel (henceforth referred to as GPR-1 and GPR-2 respectively). A comparison of the cross-
validation R? scores obtained for all these models with the top 40 features is shown in Figure 3. For all three

coefficients, GPR-2 model gives the best CV performance and hence are used for the final ML, models.

4 Feature importance

Analyzing the important features of a ML model for the given target variable can give insights into the
inherent relation between the target property and the properties of materials. Figure 4 shows the top 15
features for coefficients A, B, and C as predicted using select-K-best method. Bond lengths of the perovskite
structures and properties of X anion appear to be very important in defining free energy variation. Elemental

properties of A cation become dominant in predicting A while that of cation B become dominant for B.
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Figure 4: Feature importance of the top 15 descriptors as predicted using the select-K-best method for
coefficient A, B, and C of free energy polynomial fit.

5 Validation of ML models

To check the accuracy and usefulness of ML models built in our study, Fy values are predicted for few
compounds unseen in our dataset. Our models successfully predicted the phase changes in these compounds.
Figure 5 shows the plot of total energy i.e. the sum of the DFT static energy (electronic and ionic) and
free energy (predicted from the model) as a function of temperature (T) for BaBiO3, KCaCls, CsSrCls and
LaAlOgz. Our results correctly predict stability of these compounds correctly. It can be noted that our plots
indicate a long range of temperatures where the difference between the energies of competing phases are
very close to each other. This manifests in the observation of gradual transition from one phase to another

in experiments and also leads to co-existence of such phases for a range of temperatures.

6 Data analysis

Analyzing the trends and correlations in the dataset of perovskite compounds in our work gives useful insights
into the relation between the composition, structure and vibrational free energy of these compounds. Figure
6 and 7 show the variation of Coefficient D (ZPE) and coefficient A of the perovskite compounds in our
design space for different elements in A and B sites respectively. The elements are arranged in the ascending
order of their atomic number. The plots hint at the periodic variation of free energy values as elements go
from left to right in the periodic table. However the correlation is very subtle to gain high importance in

the ML models. Figure 8 shows the range and curvature of Fyy v/s T plots for different space groups.
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Figure 5: DFT total energy (E[ABX3]) + Helmholtz free energy (Fi) plotted as a function of temperature
(T) for competing phases of (a) BaBiOg, (b) KCaCls, (c) CsSrCls and (d) LaAlOg3 using the coefficients of
polynomial fit - predicted by the ML models built in this study
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Figure 6: Variation of Coefficient D and coefficient A of polynomial fit respectively with A site element.
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Figure 7: Variation of Coefficient D and coefficient A of polynomial fit respectively with B site element.
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Figure 8: Variation of free energy with temperature for different space groups in our training dataset.
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