Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Rapid Single Step Atmospheric Pressure Plasma Jet Deposition of a SERS Active Surface

Oliver S. J. Hagger^a, M. Emre Sener^b, Imran Khan^c, Francis Lockwood Estrin^a, Stefanos Agrotis^a, Albertus D. Handoko^d, Ivan P. Parkin^a and Daren J. Caruana^{a*}

^a Department of Chemistry, Christopher Ingold laboratories, 20 Gordon St., London, WC1H 0AJ.

^b Setaş Color Center, Tekirdağ / Turkey

 $^{\rm c}$ Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, SP4 0JQ UK

^d Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic

of Singapore, Singapore.

Figure S1. (a) depicting the scotch[®] tape adhesion test for the four silver SERS substrates. (b) optical images of the four substrates before application of tape, with the tape on, and after the tape was removed.

Table S1. All enhancement factors for each substrate were calculated using the following equation: $I_{SERS} / I_{BULK} \times C_{BULK} / C_{SERS}$. The 1586 cm⁻¹ peak was used for all enhancement factor calculations for the bulk sample and SERS substrates. A solution of 1M 4MBA was used as the blank; the peak intensity was measured to be 46 au.

	PSNP	SERSitive	OI	PDS
Working	$\frac{53230}{46}x\frac{1}{1x10^{-4}}$	$\frac{45542}{46}x\frac{1}{1x10^{-4}}$	$\frac{30368}{46}x\frac{1}{1x10^{-4}}$	$\frac{18541}{46}x\frac{1}{1x10^{-4}}$
Enhancement factor	11.6 x 10 ⁻⁶	9.9 x 10 ⁻⁶	6.6 x 10 ⁻⁶	4.0 x 10 ⁻⁶

Table S2. Comparing the cost of various commercial Ag and some Au SERS substrates against the PDS SERS substrate produced by work reported in this report.

Manufacturer	Substrate material	Cost per substrate (£) [August 2022]
PDS substrate	Ag	0.46
Ocean Insight	Ag	12
Hamanatsu	Ag	95
SERSitive	Ag	17
Nikslyte	Au	43.50
StellarNet	Ag	8.20

 Table S3. Analysis of the cost calculation for plasma jet deposition.

Component	Working	Cost	
	Time for each spot (including movement time) = 6 seconds		
	256 spots x 6 s = 1536 s		
	1536 s x 14 W = 21504 Ws		
Plasma	21504 Ws = $5.97 \times 10^{-3} \text{ kWh}$	0.20 p	
	Cost per kWh (UK, February 2023) = 34 p kWh ⁻¹		
	Cost per substrate = 0.20 p		
	For 1536 second deposit		
	Nebuliser = $\sim 300 \text{ W} = 460800 \text{ Ws} = 4.35 \text{ p}$		
	Syringe pump = 10 W = 215040 Ws = 0.15 p		
Electricity	Waveform generator = ~ 20 W = 600 Ws = 0.29 p	8.53 p	
	Physik Intrumente = $48 \text{ W} = 1440 \text{ Ws} = 0.70 \text{ p} * 3$		
	Computer = $100 \text{ W} = 3000 \text{ Ws} = 1.45 \text{ p}$		
	Cost per cylinder = $f_{10,87}$		
	Pressure of cylinder = 200 bar		
	Size of cylinder = $2.61 \text{ m}^3 = 2610 \text{ J}$		
N ₂	Flow rate = 1.5 L min ⁻¹	0.08 p	
112	$1.5 \text{ L} \text{ min}^{-1} \times 25.6 \text{ min} \times (f. 10.87) / (200 \text{ hor } \times 2610 \text{ L})$		
	$-f = 2.00 \times 10^{-4} - 0.02 \text{ m}$		
	$- \mathfrak{L} 8.00 \times 10^{-1} - 0.08 \mathrm{p}$		
	Cost per cylinder = \pounds 133.93		
	Pressure of cylinder = 200 bar		
	Size of cylinder = $9.1 \text{ m}^3 = 9100 \text{ L}$		
He	Flow rate = 0.3 Lmin^{-1}	0.06 p	
	0.3 L min ⁻¹ x 25.6 min x (£ 133.93) / (200 bar x 9100 L)		
	= £ 5.65 x 10 ⁻⁴ $=$ 0.06 p		
	Cost per cylinder = $f_{10.08}$		
	Pressure of cylinder = 120 bar		
	Size of cylinder = $1.48m^3 = 1480$ I		
Ha	Flow rate = $0.03 \text{ J} \text{ min}^{-1}$	1.74 x 10 ⁻³ p	
	$0.012 \text{ L} \text{ min}^{-1} \text{ x} 25.6 \text{ min} \text{ x} (f 10.08) / (120 \text{ har x} 1480 \text{ L})$	In the p	
	$= f 1 74 x 10^{-5} = 1 74 x 10^{-3} n$		
	<i>w</i> 1./ 1 X 10 P		
Equipment	Elegoo Mars 2 3D Resin Printer = \pounds 179		
	Cetac Nebuliser (Used) = \pounds 600	37.40 p	
	Advanced Energy Cesar Generator = $\pounds 5000$		
	Harvard Syringe Pump (Used) = \pounds 350		
	Mass Flow Controller = \pounds 420 * 3 = \pounds 1260		
	Physik Intrumente (Used) = \pounds 110 * 3 = \pounds 330		
	Consumables (4 mm tubing and gas fittings) = $\pounds 100$		

	Total = £ 7819		
	Based on a 5 year lifetime and 223 working days		
	(5 day working week,		
	28 days holiday and 9 bank holidays)		
	Cost per day = \pounds 7.01		
	Based on an 8 hour working day		
	Cost per working hour $= 87.66$ p		
	Cost for 1536 second deposition = 37.40 p		
Borosilicate slide	Pack of 100 borosilicate slide = $\pounds 2$		
	Cost per borosilicate slide = $\pounds 0.02$	20.00 p	
	Cost of 1kg industry standard resin = $\pounds 40$		
	Mass of each plasma jet model $= 21.9$ g	0.18 p	
	Cost per model = \pounds 0.99		
Resin	Based on a 30 day lifetime for each model		
Kesiii	Cost per day = $\pounds 0.03$		
	Based on an 8 hour working day		
	Cost per hour = 0.41 p		
	Cost for 1536 s deposit = 0.18 p		
	Cost of silver nitrate $(250 \text{ g}) = \text{\pounds} 334.42$		
	Injection rate of 10 ml hr ⁻¹	9.69 x 10 ⁻³ p	
	Concentration = 100 uM		
	Molar mass = $169.87 \text{ g mol}^{-1}$		
	$0.01 dm^3 x \ 1 x \ 10^{-4} M = 1 x \ 10^{-6} mol$		
Silver nitrate	$1 \ge 10^{-6} \mod x = 169.87 \mod x = 1.70 \ge 10^{-4} \mod x = 10^{-1}$		
	solution		
	For 1536 second deposit 4.26 ml solution is needed		
	$4.26 \text{ ml} / 10 \text{ ml} \text{ x } 1.70 \text{ x } 10^{-4} \text{ g} = 7.24 \text{ x } 10^{-5} \text{ g}$		
	$7.24 \text{ x } 10^{-5} \text{ g} / 250 \text{ g x } \text{\pounds} 334.42 = 9.69 \text{ x } 10^{-3} \text{ p}$		
Total	46.46 p excluding borosilicate slide		

Figure S2. Normal Raman spectra of 4MBA between 100 nm to 100 mM for PSNP (a), SERSitive (b), OI (c) silver based SERS substrates and the corresponding concentration dependence of 4MBA of the Raman peak height at 1586 cm⁻¹ for between 1×10^{-8} M to 1×10^{-2} M.

Figure S3. Carbon corrected (BE 284.8 eV) X-ray Photoelectron Spectroscopy (XPS) Ag MNN of plasma deposit and subsequent oxygen plasma treatment, and oxygen and hydrogen plasma treatment. All spectra were in agreement with Ferraria et al. [1]

References

1. Ferraria, AM., et al., X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum, 2012. **86**(12): p. 1988-1991.