Supplementary Information

Confined oriented growth of FeSe₂ on porous graphene film as binder-free anodes for high-rate lithium-ion batteries

Xiaoting Zhang,^a Jiaxiu Diao,^a Jinghao Qiao,^a Yuhui Wen,^a Hongkun Zhang^{*b, c} and Rui Wang^{*a}

^aBeijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.

^bGRINM Group Corporation Limited, Beijing 100088, China.

^cChina United Test & Certification Co., Ltd, Beijing 101407, China

* Corresponding author. E-mail: clywangrui@bift.edu.cn, zhk@cutc.net

Fig. S1 TG curves of FeSe₂@PG-4, FeSe₂@PG-6, and FeSe₂@PG.

Fig. S2 SEM images of (a) FeSe₂@PG-4, (b) FeSe₂@PG-6, and (c) FeSe₂@PG electrodes after cycling.

Table S1 The area of C=C/C-C, C-Se, C-O, and C=O in C1s spectra of FeSe₂@PG-4, FeSe₂@PG-6, and FeSe₂@PG.

	FeSe ₂ @PG-4	FeSe ₂ @PG-6	FeSe ₂ @PG
Area of $C=C/C-C$ in C1s spectra	73724.09	82562.79	58849.23
Area of C–Se in C1s spectra	16359.72	25150.84	23045.96
Area of C–O in C1s spectra	11312.03	7604.015	5164.088
	11012.00	100 110 10	0101000
Area of $C = O$ in C1s spectra	7785 173	8036 601	1716 211
A lea of C=0 In C13 spectra	1103.475	0050.001	770.244

Table S2 The area of Se-Se, Se-Fe-Se, Fe-Se, Se-O, C-Se-Fe, and C-Se-C in Se 3d spectra of

FeSe₂@PG-4, FeSe₂@PG-6, and FeSe₂@PG.

	FeSe ₂ @PG-4	FeSe ₂ @PG-6	FeSe ₂ @PG
Area of Se-Se in Se 3d spectra	4816.495	4834.59	3890.376
Area of Se-Fe-Se in Se 3d spectra	2931.876	3452.356	3007.696
Area of Fe-Se in Se 3d spectra	1192.594	1767.92	2057.808
Area of Se-O in Se 3d spectra	4402.071	4799.897	4903.049
Area of C–Se–Fe in Se 3d spectra	1167.308	1998.7	2085.992
Area of C–Se–C in Se 3d spectra	329.547	503.768	297.381

	FeSe ₂ @PG-4	FeSe ₂ @PG-6	FeSe ₂ @PG
Area of C=C/C-C in C1s spectra	67.5 %	66.9 %	64.1 %
Area of C–Se in C1s spectra	15.0 %	20.4 %	25.1 %
Area of C–O in C1s spectra	10.4 %	6.2 %	5.6 %
Area of C=O in C1s spectra	7.1 %	6.5 %	5.2 %

Table S3 The area ratio of C=C/C–C, C–Se, C–O, and C=O in C1s spectra of FeSe₂@PG-4, FeSe₂@PG-6, and FeSe₂@PG.

Table S4 The area ratio of Se-Se, Se-Fe-Se, Fe-Se, Se-O, C–Se–Fe, and C–Se–C in Se 3d spectra of FeSe₂@PG-4, FeSe₂@PG-6, and FeSe₂@PG.

	FeSe ₂ @PG-4	FeSe ₂ @PG-6	FeSe ₂ @PG
Area of Se-Se in Se 3d spectra	32.5 %	27.8 %	24.0 %
Area of Se-Fe-Se in Se 3d spectra	19.8 %	19.9 %	18.5 %
Area of Fe-Se in Se 3d spectra	8.0 %	10.2 %	12.7 %
Area of Se-O in Se 3d spectra	29.7 %	27.7 %	30.2 %
Area of C-Se-Fe in Se 3d spectra	7.8 %	11.5 %	12.8 %
Area of C–Se–C in Se 3d spectra	2.2 %	2.9 %	1.8 %

Table S5 The electrolyte resistance, SEI film resistance, and charge-transfer resistance ofFeSe2@PG-4, FeSe2@PG-6, and FeSe2@PG.

	FeSe ₂ @PG-4	FeSe ₂ @PG-6	FeSe ₂ @PG
The electrolyte resistance	5.601	3.825	3.374
The SEI film resistance	9.241	9.209	6.866
The charge-transfer resistance	42.1	39.17	29.26