Supplemental material for "Transport phenomena of TiCoSb: Defects induced modification in structure and density of states"

S. Mahakal¹, Diptasikha Das², Pintu Singha³, Aritra Banerjee³, S. C. Das⁴,

Santanu K. Maiti⁵, S. Assa Aravindh⁶ and K. Malik^{*1}

 ¹Department of Physics, Vidyasagar Metropolitan College, Kolkata-700006, India.
²Department of Physics, ADAMAS University, Kolkata-700126, India.
³Department of Physics, University of Calcutta, Kolkata-700009, India.
⁴Department of Physics, Tamkang University, New Taipei City-251301, Taiwan.
⁵Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India.
⁶Nano and Molecular Systems Research Unit (NANOMO), University of Oulu, FIN-90014, Finland.

FIGURE S1: (Color online). X-ray diffraction patterns after Rietveld refinement and the corresponding refinement parameters have been obtained, using FullProf software for $TiCoSb_{1+x}$ (x = 0.00, 0.01, 0.02, 0.03, 0.04, 0.06) samples at room temperature.

FIGURE S2: (Color online). Williamson-Hall plot of polycrystalline $TiCoSb_{1+x}$ (x=0.0, 0.01, 0.02, 0.03, 0.04, 0.06) HH materials. Solid line represents best linear fit.

Calculation of Dislocation density (N_D) using modified Williamson-Hall plot:

Dislocation density (N_D) of the samples has been obtained using the following equation:

$$\Delta K = \frac{0.9}{d} + \frac{\pi A^2 B_D^2}{2} N_D^{1/2} K^2 C \pm O(K^4 C^2)$$

C = Average dislocation contrast factor = $C_{h00} \frac{1 - q(h^2k^2 + k^2l^2 + h^2l^2)}{(h^2 + k^2 + l^2)^2}$.

h, *k*, *l* : Indices of crystal plane

- C_{h00} : Average dislocation contrast factor corresponding to the h00 reflection.
- q : Constant parameter = -2.7 [1]
- *A* : Parameter related to the effective outer cut-off radius of dislocations

 B_D : Burgers vector

d : Average crystallite size

It is assumed that the parameters q, A and B_D do not change significantly for samples TiCoSb_{1+x} (x=0, 0.01, 0.02, 0.03, 0.04, 0.06). Here, we have estimated relative dislocation densities $N_D/N_{D|x=0}$ to avoid the constant terms.

$$\left(\frac{N_D}{N_{D|=0}}\right) = \left(\frac{m_x}{m_{x=0}}\right)^2.$$

Where m_x is the slope ' ΔK versus K^2C ' curve, estimated for each sample TiCoSb_{1+x} (x=0.0, 0.01, 0.02, 0.3, 0.04, 0.06). And $m_{x=0}$ represents the slope of ' ΔK versus K^2C ' curve for x = 0.

FIGURE S3: (Color online). Modified Williamson-Hall plot of polycrystalline $TiCoSb_{1+x}$ (x=0.0, 0.01, 0.02, 0.03, 0.04, 0.06) HH materials. Solid line represents best linear fit.

FIGURE S4: (Color online). Variation of PF with temperature of polycrystalline $TiCoSb_{1+x}$ (x=0.0, 0.01, 0.02, 0.03, 0.04, 0.06) HH materials. Inset depicts Sb concentration dependent PF at room temperature (300 K).

Reference:

[1] T. Ungár, S. Ott, P. G. Sanders, A. Borbély, and J. R. Weertman, Acta Mater. 46, 3693 (1998).