Exploration of a NiFeV multi-metal compositional space for the Oxygen Evolution Reaction

Anagha Usha Vijayakumar¹, Jael George Mathew², Anya Muzikansky¹, Hannah-Noa Barad^{*1}, David Zitoun^{*1}

¹Department of Chemistry and Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel.

²Max Planck Institute for Intelligent Systems (MPI-IS), Heisenbergstr. 3, 70569 Stuttgart, Germany

*e-mail: <u>David.Zitoun@biu.ac.il</u>, *e-mail: <u>hannah-noa.barad@biu.ac.il</u>

Figure S1. GIXRD of several points on NiFeV library

composition	D spacing (A°)	Unit cell parameter, a (A°)
$Ni_{94}Fe_{5.5}V_{0.5}$	2.031	3.517
$Ni_{88.5}Fe_{10.5}V_1$	2.032	3.519
Ni ₇₉ Fe _{13.5} V _{7.5}	2.047	3.545

Table S1. Parameters derived from GIXRD measurements of selected points from NiFeV library. As the added metal level increases, the d-spacing increases, corresponding to a volume expansion due to lattice distortion.

Figure S2. Point by point heatmap of overpotential @10 mA/cm² (A) NiFe library and (B) NiFeV library. The three grey points at the left edge of the map correspond to the points from where contact to the working electrode was placed.

Figure S3. (A) Nyquist impedance of selected points of the NiFeV library. (B) Fitting of the best performing catalyst and the equivalent circuit used for fitting.

Figure S4. (A) Fe 2p spectra comparison of NiFe and NiFeV before OER (B) Fe 2p spectra comparison of various points on NiFeV after OER (C) O1s spectra comparison of NiFe and NiFeV before OER (D) O1s spectra comparison of various points on NiFeV after OER

Reference	Combinatorial synthesis route	High throughput screening	Comments	Overpotential
		technique		
Our work	Combinatorial PVD	Automated scanning droplet cell	NiFe and ternary NiFeV libraries	320-330 mV at 10 mAcm ⁻²
		measurements		
H. N. Barad, M.	Glancing angle	Automated	octonary	500 mV -560 mV
Alarcón-Correa,	PVD	scanning droplet	materials	at 10 mA cm ⁻²
G. Salinas, E.		cell	libraries	
Oren, F. Peter, A.		measurements	consisting of	
Kuhn and P.			Ni, La, Cr, Mo,	
Fischer, Mater.			BaTi, Co	
<i>Today</i> , 2021, 50 , 89–99.				
A. U.	Spray pyrolysis	Automated	NiFeCo oxide	294 mV - 320
Vijayakumar, N.		scanning droplet	library	mV at 10 mA
Aloni, V. T.		cell		cm ⁻²
Veettil, G.		measurements		
Rahamim, S. S.				
Hardisty, M.				
Zysler, S. Tirosh				
and D. Zitoun,				
ACS Appl. Energy				
Mater., 2022, 5 ,				
<u>4017–4024.</u>		T1 1 1 1	0.1 1:00	210.250 XX /
R. D. Smith, M. S. \mathbf{D}	Photochemical	Three electrode	21 different	210-250 mV at
Prevot, R. D.	metal-organic	electrochemical	compositions of	0.5 mA cm^{-2}
Fagan, S. Trudel,	deposition	cell (not	NIFeCo oxide	
and C. P.	(PMOD) (each	automated)	investigated for	
Am Cham Soc	deposited		Investigated for	
Am. Chem. Soc., 2012 135 11580	individually)		UEK.	
11586.	marvidually)			
C. Schwanke, H.	Combinatorial	Automated	130 elemental	320 mV at <u>1.15</u>
S. Stein, L. Xi, K.	reactive	scanning droplet	compositions of	$\underline{\mathrm{mA \ cm^{-2}}}$
Sliozberg, W.	magnetron	cell	ternary	
Schuhmann, A.	sputtering	measurements	N1FeCrOx	
Ludwig, and K.			library	
M. Lange,				
<i>Scientific reports</i> , 2017, 7 , 1-7				
X. Cao, E.	Combinatorial	Three electrode	66 different	256 mV at 10
Johnson and M.	electrodeposition	electrochemical	compositions of	mA cm ⁻²
Nath, ACS		cell (not	quaternary Fe-	
Sustain. Chem.		automated)	Co-Cu	
Eng., 2019, 7,			selenides	
9588–9600.				

Table S2. Comparison of our combinatorial approach vs those from literature

Table S3. Comparison of our NiFeV catalyst with those from literature

Reference	Synthesis method	Catalyst composition	Overpotential at 10 mAcm ⁻²	Tafel slope (mV
				dec^{-1}

Our work Ni	PVD (ITO	Ni ⁵ 84.2Fe _{13.5} V _{2.3}	320 mV	v 87.2
W. Wan, H. Wu, 7	substrate)	NER		
We wall, Π . wu, Z .	Magnetion	INIF C V 0.65	50 Z40 III Y	
Wallg, G. Cal, D. Ll,	sputtering		- 40	
T. Zhong, T. Jiang,				
C. Jiang and F. Ken,	substrate)		30	
Appl. Surj. Scl., 2025,			20	
011 , 133/32.			¹⁰ 2 (20
J. Jiang, F. Sun, S.	Hydrothermal	N13Fe0.5 V 0.5	200 m v	39
Zhou, W. Hu, H.	synthesis		0	
Zhang, J. Dong, Z.				
Jiang, J. Zhao, J. Li,				
W. Yan and M.				
Wang, Nat.				
<i>Commun.</i> , 2018, 9 ,				
$\frac{1-12}{1-12}$	~1 1 1 1		2 00 X	40.4
H. S. Chavan, C. H.	Chemical bath	N10.75V0.25	200 mV	48.1
Lee, A. I. Inamdar, J.	deposition	LDH		
Han, S. Park, S. Cho,	(stainless steel			
N. K. Shreshta, S. U.	substrate)			
Lee, B. Hou, H. Im				
and H. Kim, ACS				
<i>Catal.</i> , 2022, 12 ,				
3821–3831.				
P. Li, X. Duan, Y.	hydrothermal	V doped NiFe-	192 mV	42
Kuang, Y. Li, G.		LDH		
Zhang, W. Liu and X.				
Sun, Adv. Energy				
Mater., 2018, 8, 15				
Z. Wang, W. Liu, Y.	Co-precipitation	Fe doped Ni3V1	269 mV	68
Hu, L. Xu, M. Guan,	method	LDH		
J. Qiu, Y. Huang, J.				
Bao and H. Li, Inorg.				
Chem. Front., 2019,				
6 , 1890–1896.				
K. N. Dinh, P. Zheng,	hydrothermal	$Ni_{0.75}Fe_{0.125}V_{0.125}$	231 mV	39.4
Z. Dai, Y. Zhang, R.		LDH		
Dangol, Y. Zheng, B.				
Li, Y. Zong and Q.				
Yan, Small, 2018, 14,				
1–9.				

Figure S5. EDAX measurements on NiFeV sample

Figure S6. HRSEM measurements at different points on NiFeV sample.

Figure S7. AFM images (30 x 30 μ m) taken at various points on the NiFeV thin film.

Sample	$R_a(nm)$
Point 1	1.84
Point 2	2.02
Point 3	1.14
Point 4	2.03

Table S4. Calculated surface roughness (r_a) at various points on the NiFeV thin film

Figure S8. XRR measurements at various points on the NiFeV sample.

Figure S9.(A) CV measurements in the non-faradaic region at various points on the NiFeV sample (B) Scan rate vs current density plot at all measured points for Cdl calculation from slope

Figure S10. V2p XPS spectrum of NiFeV before and after OER measurement.