Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Material (ESI) for Materials Advances.

This journal is $\ensuremath{\mathbb{C}}$ The Rouyal Society of Chemistry 2023

Supplementary Information

Photo-enhanced Metal-assisted Chemical Etching of α -Gallium Oxide Grown by Halide Vapor-Phase Epitaxy on a Sapphire Substrate and its Applications

Woong Choi,^a Dae-Woo Jeon,^b Ji-Hyeon Park,^b Dongryul Lee,^c Soobeen Lee,^a Kwang Hyeon Baik^d and Jihyun Kim^{a, †}

^aDepartment of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea

^bKorea Institute of Ceramic Engineering and Technology, Jinju 52851, South Korea

^oDepartment of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea

^dDepartment of Materials Science and Engineering, Hongik University, Jochiwon, Sejong 30016, South Korea

[†]Corresponding author: Jihyun Kim (jihyunkim@snu.ac.kr)

Figure S1. (a) Etch rate (E/R) of PE-MAC etch of α -Ga₂O₃ at 32 °C. (b) RMS roughness changes at 32 °C etching. (c) Etch rate (E/R) of PE-MAC etch of α -Ga₂O₃ at 45 °C. (d) RMS roughness changes in 45 °C etching. (e) Etch rate (E/R) of PE-MAC etch of α -Ga₂O₃ at 50 °C. (f) RMS roughness changes in 50 °C etching.

Figure S2. *I*–*V* characteristics of α -Ga₂O₃ PD under dark condition as well as 254 and 365 nm lights illuminations.