Supporting Information

The impact of Ni and Zn doping on the thermal durability and thermoelectric variables of pristine CuSe nanoparticles

Sefali R. Patel^{1,a*}, Sunil H. Chaki^{1,2,b*}, Mitesh B. Solanki³, Rohitkumar M. Kannaujiya¹, Zubin R. Parekh¹, Ankurkumar J. Khimani⁴, Milind P. Deshpande¹

¹P. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar – 388120, Gujarat, India.

²Department of Applied & Interdisciplinary Sciences, CISST, Sardar Patel University, Vallabh Vidyanagar – 388120, Gujarat, India.

³Department of Physics, Parul Institute of Applied Sciences, Parul University, Waghodia, Vadodara, Gujarat, India- 391760.

⁴Department of Physics, Shri A. N. Patel P. G. Institute of Science and Research, Anand – 388001, Gujarat, India.

*Corresponding authors: <u>asefalipatel12345@gmail.com</u> (Sefali R. Patel) <u>bsunilchaki@yahoo.co.in</u> (Sunil H. Chaki)

Figure S1 The XRD patterns for as-synthesized nanoparticles (adapted from S. R. Patel et. al., ACS Applied Biomaterials, 2023, <u>http://dx.doi.org/10.1021/acsabm.3c00090</u>)

Table S1: The structural data for as-synthesized S1, S2, S3, S4 and S5 nanoparticles (adaptedfrom S. R. Patel et. al., ACS Applied Biomaterials, 2023,

Sample	Lattice parameters		Volume	Crystallite size	Micro	Dislocation	
	a (Å)	c (Å)	V(Å ³)	t (nm)	Strain	density δ	
S1	3.948	17.285	233.31	11.981 ± 0.108	0.002904	7.046×10^{15}	
S2	3.942	17.258	232.24	14.805 ± 0.162	0.002426	5.015×10^{15}	
S3	3.936	17.231	231.17	11.658 ± 0.098	0.003139	8.819×10^{15}	
S4	3.957	17.326	234.94	11.882 ± 0.112	0.002979	7.531×10^{15}	
S5	3.966	17.366	236.55	8.464 ± 0.092	0.004237	15.581×10^{15}	

http://dx.doi.org/10.1021/acsabm.3c00090).

Figure S2 The EDAX spectra for all five as-synthesized nanoparticles (adapted from S. R. Patel et. al., ACS Applied Biomaterials, 2023, <u>http://dx.doi.org/10.1021/acsabm.3c00090</u>).

		(81)		Cu		Se	
and the second		10 µm		<u>10 μm</u>		10 µm	
	(S2)		Cu		Ni		Se
a the second sec	<u>10 μ</u> m		<u>10 μ</u> m		<u>10 µm</u>		<u>10 µ</u> m
	(S3)		Cu		Ni 10 um		Se
The same state of the	<u>Io µin</u>		<u>10 µm</u>		<u>ro pin</u>		<u>10 µm</u>
	(S4)		Cu		Zn		Se
	<u>10 µm</u>		<u>10 µ</u> m		<u>10 µ</u> m		<u>10 μm</u>
	(85)		Cu		Zn		Se
	<u>10 µm</u>		10 µm		<u>10 μm</u>		10 µm

Figure S3 The EDAX elemental mapping micrographs for S1, S2, S3, S4 and S5 nanoparticles (adapted from S. R. Patel et. al., ACS Applied Biomaterials, 2023,

http://dx.doi.org/10.1021/acsabm.3c00090).

Figure S4 The FESEM micrographs for S1, S2, S3, S4 and S5 nanoparticles (adapted from S. R. Patel et. al., ACS Applied Biomaterials, 2023, <u>http://dx.doi.org/10.1021/acsabm.3c00090</u>).

Figure S5 The XRD pattern of Cu₂Se resulting from the vacuum annealing of pristine CuSe nanoparticles.