Self-textured ZnO *via* AACVD of alkyl alkoxides: A solution-based seed-less route towards optoelectronic-grade coatings.

SUPPORTING INFORMATION

Clara Sanchez-Perez,^{1,2*} Sriluxmi Srimurugananthan,¹ Carlos Sotelo-Vazquez,³ Sanjayan Sathashivam,^{1,4} Mangyue Wang,¹ Javier Marugan,³ Ivan P. Parkin,¹ Claire J. Carmalt.^{1*}

1. University College London, Department of Chemistry, 20 Gordon St, London WC1H 0AJ, UK.

- 2. Instituo de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- 3. Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain.
- 4. School of Engineering, London South Bank University, London, SE1 0AA, UK

Figure S1. Schematic top-view representation of a (a) double-source and a (b) single-source AACVD configuration, both containing a blade element on the baffle to generate a laminar flow inside the reactor (blue arrows).

Figure S2. GIXRD patterns of ZnO thin films grown from EZI (top red) and EZI (bottom black) in toluene/isopropanol anhydrous solutions at 450 °C using a single-inlet AACVD configuration.

Figure S3. Picture of sections of ZnO thin film grown via AACVD of Zn(acac)₂ in MeOH at (a) 400 °C, (b) 450 °C and (c) 500 °C exhibiting increasing carbon contamination.

Figure S4. Schematic representation of nucleation, crystal growth and texture evolution during polycrystalline ZnO film deposition using AACVD of Zn(acac)₂ and DEZ solutions.

Figure S5. Schematic representation of nucleation, crystal growth and texture evolution during polycrystalline ZnO film deposition using AACVD of Zn(acac)₂ and DEZ solutions.