Supporting Information

Ultra-Stretchable and Shape-Memorable Output-Boosted Triboelectric Nanogenerator Utilizing Highly Ordered Microdome-Crowning Thermoplastic Polyurethane for Finger-Motion Detection Sensor

Ngoc Mai Chau,^{1,3} Phuong Mai Tran,^{2,3} Thu Ha Le,^{1,3} Thi Thai Ha La,^{*,1,3} Van-Tien Bui^{*,1,3}

¹Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam

²Faculty of Environment and Natural Resources, , Ho Chi Minh City University of Technology (HCMUT)), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam

³Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam

Corresponding authors: <u>tienbv@hcmut.edu.vn (V.-T. Bui);</u>

lathaihapolyme@hcmut.edu.vn (T.T.H. La)

KEYWORDS: polyurethane; surface patterning; microdome arrays; stretchable, IPS.

Figure S1. Fabrication of *hc*-PVA master mold. (a) Fabricating procedure of *hc*-PVA master mold. (b-c) Optical microscopy image of *hc*-PVA master mold.

The fabrication of *hc*-PVA mold was implemented using the Improved Phase Separation technique (IPS) and molding replica. First, honeycomb concave structured polyimide (*hc*-PI) was prepared through 2-stage process: spin-coating the PI solution 5 wt. % in chloroform onto a copper substrate with the speed of 600 rpm to produce a flat surface, and then dip-coating it into a pair of chloroform/methanol mixture for 5 s to carry out IPS process in the ambient environment [24]. In the next stage, PDMS was carefully casted onto the surface of *hc*-PI with degassing technique to remove bubbles and replicate the exact counterpart of *hc*-PI [23]. Similarly, the PVA solution 12 wt. % in distilled water was drop-cast onto the convex PDMS, then putting into the vacuum desiccator in 10 min before exposing to the normal air for natural drying in 2 days (**Figure S1a**). The *hc*-PVA morphology can be observed in **Figure S1b-c**.

Figure S2. Enhancement in effective contact surface area among various pattern features: microdome, cube and pyramid. The surface area values were calculated using similar pattern height (2.5 μm) and projected width (2 μm) by Rhino software version 7.0.

Figure S3. Multi-direction lateral deformation of microdome.

Figure S4. "Cubital fossa"-like storing effect.

Materials	Voltage (V)	Location of sensor	Reference
Knitting graphene textile	15	Knee, slow running	15
	18	Knee, fast walking	

	20	Knee, running	
FEP, silicone/carbon black	140	Knee, walk	16
	175	Knee, high	
	60	Knee, slight jump	
	250	Knee, high jump	
PDMS/galinstan liquid metal nanoparticles	10	Pressure sensing by hand- tapping	17
Pyramid PDMS, polyimide, gold, epidermis	70	Finger, 60° bending	18
PTFE, magnetic pole, copper	0.4	Finger, 90° bending	19
ITO, FEP, PDMS, skin	5	Finger, bending	20
Carbon fiber, PVA, PDMS as Multifunctional Coaxial Energy Fiber	0.6	Finger, 90° bending	21
Mxene $(T_3C_2T_x)$, polydimethylsiloxane, Copper/nickel textile	23	Finger tapping	
	35	Hand clapping	22
	32	Hammering	
Ionogel from acrylic acid (AA) and 3- dimethyl (methacryloyloxyethyl) ammonium propane sulfonate (DMAPS), PDMS, PU	3	Elbow, 60° bending	
	2	Elbow, 90° bending	S2
	0.75	Elbow, 135° bending	
Microdome TPU, microdome PDMS	15	Finger, 1st joint bending	
	40	Finger, 2nd joint bending	This study
	60	Finger-tapping	

Video S1. High stretching property of *c*-TPU (.mp4)

Video S2. *c*-TPU based TENG powering 120 LEDs (.mov)

Video S3. First joint bending signals (.mp4)

Video S4. Second joint bending signals (.mp4)

Video S5. Finger-tapping signals (.mp4)

Video S6. Softly hand-pressing signals (.mp4)

Video S7. Flexible TENG bending signals (.mp4)

Video S8. Flexible TENG twisting signals (.mp4)

References

- S1 G. H. Nguyen Hoang, N. M. Chau, T. Van Le, V. T. Bui and T. T. H. La, *Polymer (Guildf)*., 2023, 285, 126321.
- S2 L. Sun, S. Chen, Y. Guo, J. Song, L. Zhang, L. Xiao, Q. Guan and Z. You, *Nano Energy*, 2019, **63**, 103847.