Electrochemical Immunosensor based on Nanostructured Lanthanum oxide substituted reduced graphene oxide Interface for Ultralow Ciprofloxacin Detection in Spiked Milk Samples

Navneet Chaudhary,^{1,2@} Amit K. Yadav,^{1@} Damini Verma,¹ Jai Gopal Sharma,² Partima R

Solanki1*

¹Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India

²Department of Biotechnology, Delhi Technological University, New Delhi-110042, India

*Corresponding Author:

E-mail: pratimarsolanki@gmail.com;partima@mail.jnu.ac.in

Tel: 011-26704740/26704699

(a) Authors contributed equally to this work.

SUPPLEMENTARY INFORMATION

Itersity (a.u.) Intersity (a.u.) Inter

XRD spectra of nLa₂O₃ NPs

Figure S1: XRD spectra of nLa₂O₃ NPs

Raman spectra of nLa₂O₃ NPs

Figure S2: Raman spectra of nLa₂O₃ NPs

Contact angle studies

Figure S3: Water contact angle of ITO (a), APTES/nLa₂O₃@rGO/ITO (b), anti-CPX/APTES/nLa₂O₃@rGO/ITO (c) and BSA/anti-CPX/APTES/nLa₂O₃@rGO/ITO (d).

EIS Studies:

ITO The electrochemical impedance spectroscopic studies of (curve i), APTES/nLa2O3@rGO/ITO (curve ii), anti-CPX/APTES/nLa2O3@rGO/ITO (curve iii) and BSA/anti-CPX/APTES/nLa2O3@rGO/ITO (curve iv) have been done in PBS solution containing 5 mM [Fe(CN)₆]^{3-/4-} in the frequency range of 100 kHz to 10 Hz [Fig. 5(d)]. The semicircle of Nyquist plot gives the charge transfer resistance (R_{ct}) of electrode that depends on the dielectric features of electrode surface and electrolyte interface. The value of R_{ct} was obtained as 249.35 Ω for ITO glass substrate (curve i), which is the highest. However there is significant decrease in the value of $R_{ct} 205.2 \Omega$ after the deposition of APTES/nLa₂O₃@rGO nanocomposite onto ITO surface (curve ii), indicates the high electrical conductivity of nLa2O3@rGO nanocomposite and fast diffusion of redox species [Fe(CN)6]3-/4to the electrode surface. However, after the covalent immobilization of anti-CPX antibodies to the free -NH₂ sites of APTES functionalized nLa₂O₃@rGO nanocomposite, the value of R_{ct} drastically decreases to 165.58 Ω for anti-CPX/APTES/nLa₂O₃@rGO/ITO (curve iii). This decrease in the value of R_{ct} can be assigned to the spatial orientation of anti-CPX molecule onto electrode surface that facilitate increased charge transfer process between redox species $[Fe(CN)_6]^{3-/4-}$ and free available functional group (NH₂) of anti-CPX molecule (Kumar et al. 2015). The value of R_{ct} increases (176.42 Ω ; curve iv) after the BSA immobilization on the anti-CPX/APTES/nLa2O3@rGO/ITO immunoelectrode due to the macromolecular structure and insulating structure of BSA that hinder the charge transfer between redox species $[Fe(CN)_6]$ and electrode surface.

The heterogeneous electron transfer rate constant (K_{ct}) for all respective electrodes was calculated using Eq.

$$Kct = \frac{RT}{n^2 F^2 ARct[S]}$$

Where R is gas constant, T is the absolute temperature, n is the no. of transferred electrons per molecule of the redox probe, F is Faraday constant, A is the surface area of the electrode (cm²) and [S] is the concentration of redox probe. The K_{ct} value of ITO electrode was found as 2.006 $\times 10^{-6}$ while in the case of APTES/nLa₂O₃@rGO/ITO the value of K_{ct} increases to 3.044 $\times 10^{-6}$

exhibiting the faster electron transfer between the APTES/nLa₂O₃@rGO/ITO electrode and redox species. After immobilization of anti-CPX, the value of K_{ct} again increases to 4.329×10^{-6} shows the fast electron exchange between immunoelectrode and redox species. However, after the BSA immobilization on anti-CPX/APTES/nLa₂O₃@rGO/ITO immunoelectrode, the value of K_{ct} decreases to 2.160×10^{-6} , due to its insulating nature which resist the electron transfer.

The Time constant (τ) for each electrode has been calculated using the given equation as below

$$R_{ct} \cdot C_{dl} = 1 / 2\pi f_{max} = \tau$$

After the EPD of APTES/nLa₂O₃@rGO on ITO substrate there is abrupt decrease in value of time constant was found as compared to ITO glass substrate (8.938 x 10⁻⁴ s). It reveals the fast diffusion of $[Fe(CN)_6]^{3-/4-}$ ions at the interface of electrolyte and APTES/nLa₂O₃@rGO/ITO electrode. The immobilization of anti-CPX on to the APTES/nLa₂O₃@rGO/ITO result in decrease of τ value 2.716 x 10⁻⁴ s due to the fast diffusion of $[Fe(CN)_6]^{3-/4-}$ ions. After the BSA immobilization the value of τ again increases (2.724 x 10⁻⁴ s) due the insulating behavior of BSA.

Electrode	Charge transfer	Heterogeneous electron	Time
	Resistance (R _{ct})	transfer rate constant [K _{ct} (cms ⁻¹)]	$\textbf{constant}\left(\tau\right)s$
ITO	249.35 Ω	2.006×10^{-6}	8.938 × 10 ⁻⁴
APTES/nLa ₂ O ₃	205.2 Ω	3.044×10^{-6}	5.631 × 10 ⁻⁴
NPs@rGO/ITO			
anti-CPX/APTES/nLa ₂ O ₃	165.58 Ω	4.329×10^{-6}	2.716 × 10 ⁻⁴
NPs@rGO/ITO			
BSA/anti-CPX/APTES/nLa ₂ O ₃	176.42 Ω	2.160×10^{-6}	2.724×10^{-4}
NPs@rGO/ITO			

Table S1. EIS features of various electrodes