Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Contents

Table S1: List of conductivity of some of the reported conductive MOFs in assynthesized, guest-free and iodine-loaded forms

Figure S1: PXRD of Mn-F, Co-F, Ni-F and Zn-F MOF

Figure S2: M-O and C-O bond lengths of Mn-F, Co-F and Zn-F

Figure S3: FTIR spectra of Mn-F, Co-F, Ni-F and Zn-F MOFs

Figure S4: Calculated band gap (eV) of the MOFs.

Table S2: CO stretching frequency values after and before heating

Figure S5: FTIR spectra showing CO stretching frequency after and before heating for MOFs

Figure S6: Temperature dependent conductivity curves

Figure S7: TGA graph of Mn-F MOF

Figure S8: PXRD of (a) Mn-F and (b) Co-F MOF before and after heating

Figure S9: PXRD of Ni-F MOF before and after heating

Figure S10: SEM image of the Co-F pellet

Figure S11: Single crystal sizes of the MOFs

Figure S12: Optimized geometries of the Zn, Ni, Mn and Co containing Metal-Organic Frameworks.

Table S3: Crystallographic table

MOFs	Assynthesized/	Guest-free/	I ₂ loaded	Measurments	$E_{a}(eV)$	References
	solvated	desolvated	conductivity			
	Conductivity	Conductivity	(Scm^{-1})			
	(Scm ⁻¹)	(Scm ⁻¹)				
Co ₂ (DOBDC)(DMF) ₂	-	1.5×10^{-13}	-	2-probe	0.58	1
Ni ₂ (DOBDC)(DMF) ₂	-	2.8×10^{-14}	-	2-probe	0.62	
$Zn_2(DOBDC)(DMF)_2$	-	3.3×10^{-14}	-	2-probe	0.54	
Mn ₂ (DOBDC)(DMF) ₂	3.9×10^{-13}	3.0×10^{-13}	-	2-probe	0.55	2
Mn ₂ (DSBDC)(DMF) ₂	2.5×10^{-12}	1.2×10^{-12}	-	2-probe	0.81	3
Cu [Ni(pdt) ₂]	-	1×10^{-8}	1×10^{-4}	2-probe	-	4
$[Co(ebic)_2]_n$	-	2.46×10^{-9}	2.21×10^{-7}	-	-	5
$[Zn(ebic)_2]_n$	-	4.33×10^{-9}	3.47×10^{-7}	-	-	
$[Co_{1.5}(bdc)_{1.5}(H_2bpz)]$	-	2.59×10^{-9}	1.56×10^{-6}	2-probe	-	6
$[Tb_3(Cu_4I_4)_3(ina)_9]_n$	-	5.72 × 10 ⁻¹¹	2.16×10^{-4}	-	-	7
Cu ₃ HIB ₂	13	-	-	4-probe	-	8
Ni ₃ HIB ₂	8	-	-	4-probe	-	
Ni ₃ HTB ₂	0.15	-	-	2-probe	-	9
Ni ₃ HITP ₂	2	-	-	2-probe	-	10
$[Cu_3(C_6S_6)]_n$	1,580	-	-	4-probe	0.00206	11
Cu ₃ BHS	110	-	-	4-probe	-	12
Cu ₃ HHTP ₂	1.5	-	-	4-probe	-	13
Cu-CAT-1	0.18	-	-	4-point	-	14
Ni ₃ TTB ₂	0.1	-	-	van der Pauw	0.041	15
$[H_2N(CH_3)_2][Mn(HCO_2)_3]$	4.237x10 ⁻¹	5.279 x10 ⁻¹	-	2-probe	0.00731	This work
$[H_2N(CH_3)_2][Co(HCO_2)_3]$	3.015 x10 ⁻¹	1.052 x10 ⁻¹	-	2-probe	0.01305	
$[H_2N(CH_3)_2][Ni(HCO_2)_3]$	4.872 x10 ⁻³	4.975 x10 ⁻¹	-	2-probe	0.01590	
$[H_2N(CH_3)_2][Zn(HCO_2)_3]$	4.785 x10 ⁻³	1.492 x10 ⁻¹	-	2-probe	0.01599	

Table **S1**: List of conductivity of some of the reported conductive MOFs in assynthesized, guest-free and iodine-loaded forms.

 $H_2pdt = pyrazine - 2,3$ -dithiol, Hebic = 2-ethyl-1H-benzo[d]imidazole-5-carboxylic acid, $H_2bdc = benzene - 1,4$ -dicarboxylic acid, bpz = 3,3,5,5-tetramethyl-4,4-bipyrazole, Hina = isonicotinic acid, DOBDC = 2,5-dioxybenzene - 1,4-dicarboxylate, DSBDC = 2,5-disulfidobenzene - 1,4-dicarboxylate, HIB = Hexaiminobenzene, HTB = Hexathiolbenzene, HITP = 2,3,6,7,10,11-Hexaiminotriphenylene, BHS = Benzene hexaselenolate, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene, CAT = Catecholate, TTB = triamino-trithiolbenzene, $E_a = activation energy$.

Fig S1: PXRD of (a) Mn-F, (b) Co-F, (c) Ni-F and (d) Zn-F MOFs; simulated (black) and experimental (red).

Fig S2: M-O and C-O bond lengths of (a) Mn-F, (b) Co-F, (c) Ni-F and (d) Zn-F.

Fig S3: FTIR spectra of Mn-F, Co-F, Ni-F and Zn-F MOFs.

Fig **S4:** Calculated band gap (eV) of the MOFs.

Table S2: CO stretching frequency values of MOFs after and before heating.

MOF	Before heating, 9co	After heating, 9co	
	in cm ⁻¹	in cm ⁻¹	
Mn-F	1574	1587	
Co-F	1573	1585	
Ni-F	1585	1587	
Zn-F	1614	1630	

Figure S5: FTIR spectra C-O stretching frequencies before and after heating in (a) Mn-F, (b) Co-F, (c) Ni-F and (d) Zn-F.

S6: Temperature dependent conductivity curve of (a) Mn-F, (b) Co-F, (c) Ni-F and (d) Zn-F MOFs.

Fig S7: TGA graph of Mn-F.

Fig S8: PXRD of (a) Mn-F and (b) Co-F before and after heating.

Fig S9: PXRD of Ni-F; simulated (black) and after heat (green) at 160 °C for 24 h.

Figure S10: SEM image (2000X and 5000X) of the Co-F pellet.

Fig S11: Single crystal images of the MOFs.

Fig **S12**: Optimized geometries of the Zn, Ni, Mn and Co containing Metal-Organic Frameworks.

Compound No.	Mn-F	Co-F	Zn-F
Formulae	$C_{15}H_{15}Mn_3N_9O_{18}$	C ₁₅ H ₉ Co ₃ N ₉ O ₁₈	$C_{15}H_9N_9O_{18}Zn_3$
Mol. wt.	774.18	774.10	799.48
CCDC No	2263898	2263917	2263916
Crystal system	Trigonal	Trigonal	Trigonal
Space group	<i>R-3c</i>	<i>R-3c</i>	<i>R-3c</i>
Temperature (K)	298 (2)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073
a (Å)	8.3840(16)	8.1984(6)	8.1966(4)
b (Å)	8.3840(16)	8.1984(6)	8.1966(4)
c (Å)	23.021(6)	22.2560(17)	22.280(2)
α (°)	90.00	90.00	90.00
β (°)	90.00	90.00	90.00
γ (°)	120.00	120.00	120.00
V (Å ³)	1295.50(17)	1295.50(17)	1296.32(15)
Ζ	2	2	2
Density/gcm ⁻³	1.897	1.984	2.048
Abs. Coeff. /mm ⁻¹	1.428	1.447	2.884
Abs. correction	none	none	none
F(000)	768	672	792

Table S3: Crystallographic table

Total no. of	279	268	267
reflections			
Reflections, I >	277	267	263
2σ(I)	277	207	
Max. 2θ (°)	25.24	25.21	25.13
	-10≤ h ≤10	-9≤ h ≤9	-9≤ h ≤9
Ranges (h, k, l)	$-10 \le k \le 10$	$-9 \le k \le 9$	$-9 \le k \le 9$
	$-27 \le 1 \le 27$	$-26 \le 1 \le 26$	$-25 \le 1 \le 26$
Completeness to	0.976	1.000	1.000
20 (%)			
Data/ Restraints /	279/0/ 28	268/0/ 25	267/0/ 25
Parameters			
Goof (F^2)	1.262	1.168	1.065
R indices $[I >$	0.0720	0.0553	0.0750
$2\sigma(I)$]	0.0729	0.0555	
R indices (all data)	0.0730	0.0552	0.0755

References

- L. Sun, C. H. Hendon, S. S. Park, Y. Tulchinsky, R. Wan, F. Wang, A. Walsh and M. Dinca, *Chem. Sci.*, 2017, 8, 4450-4457.
- 2 L. Sun, C. H. Hendon, M. A. Minier, A. Walsh and M. Dinca, J. Am. Chem. Soc., 2015, 137, 6164-6167.
- 3 L. Sun, T. Miyakai, S. Seki and M. Dinca, J. Am. Chem. Soc., 2013, 135, 8185.
- 4 Y. Kobayashi, B. Jacobs, M. D. Allendorf and J. R. Long, *Chem. Mater.*, 2010, 22, 4120-4122.
- 5 F. Yu, D. D. Li, L. Cheng, Z. Yin, M. H. Zeng and M. Kurmoo, *Inorg. Chem.*, 2015, 54, 1655-1660.
- G. P. Li, K. Zhang, H.Y. Zhao, L. Hou and Y. Y. Wang, *ChemPlusChem*, 2017, 82,716-720.
- 7 Y. Q. Hu, M. Q. Li, Y. Wang, T. Zhang, P. Q. Liao, Z. Zheng, X. M. Chen and Y. Z. Zheng, *Chem. Eur.*, J. 2017, 23, 8409-8413.

- 8 J. H. Dou, L. Sun, Y. Ge, W. Li, C. H. Hendon, J. Li, S. Gul, J. Yano, E. A. Stach and M. Dinca, J. Am. Chem. Soc., 2017, 139, 13608-13611.
- 9 T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J. H. Ryu, S. Sasaki, J. Kim, K. Nakazato and M. Takata, J. Am. Chem. Soc., 2013, 135, 2462-2465.
- 10D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik and M. Dinca, J. Am. Chem. Soc., 2014, 136, 8859-8862.
- 11 X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. Di, Y. Yi, Y. Sun,
 W. Xu and D. Zhu, *Nat. Commun.*, 2015, 6, 7408.
- 12 Y. Cui, J. Yan, Z. Chen, J. Zhang, Y. Zou, Y. Sun, W. Xu and D. Zhu, *Adv. Sci.*, 2019, 6, 1802235.
- 13 R.W. Day, D.K. Bediako, M. Rezaee, L.R. Parent, G. Skorupskii, M. Q. Arguilla, C. H. Hendon, I. Stassen, N. C. Gianneschi, P. Kim and M. Dincă, *ACS Cent. Sci.*, 2019, 5, 1959-1964.
- 14 M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao and F. Zhou, *Chem. Mater.*, 2012, 24, 3511–3513.
- 15 X. Sun, K. H. Wu, R. Sakamoto, T. Kusamoto, H. Maeda, X. Ni, W. Jiang, F. Liu, S. Sasaki, H. Masunaga and H. Nishihara, *Chem. Sci.*, 2017, 8, 8078–8085.