Supporting Information

Cobalt oxide decked with inorganic-sulfur containing vanadium oxide for chromium (VI) reduction and UV-light assisted methyl orange degradation

Sayanika Saikia^a, Manoshi Saikia^a, Salma A. Khanam^a, Seonghwan Lee^b, Young-Bin Park^b, Lakshi Saikia^c, Gautam Gogoi^a, and Kusum K. Bania^a*

^aDepartment of Chemical Sciences, Tezpur University, Assam, India, 784028. ^bDepartment of Mechanical Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea. ^cMaterials Science and Technology Division (MSTD), CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.

Corresponding Author *Email: kusum@tezu.ernet.in or <u>bania.kusum8@gmail.com</u>. ORCID **Kusum K. Bania:** 0000-0001-6535-3913

Sl No.	Title	Page No.
1	Physical Measurements	S3-S4
2	DRS and Tauc's plot of S -VO _x and CoO _x , Fig. S1	S5
3	XPS of C(1s) of CoO _x -S-VO _x , Fig. S2	S6
4	EPR analysis and TGA analysis of CoO _x -S-VO _x , Fig. S3	S7
5	STEM-HAADF-EDX mapping of CoO _x -S-VO _x , Fig. S4	S8
6	Kinetics of Cr(VI) reduction, Fig. S5	S9
7	UV spectra and bar diagram of Cr(VI) reduction for different Cr solution concentration, Fig. S6	S10
8	Efficiency of S-VO _x , CoO _x , Co ₃ O ₄ -V ₂ O ₅ and CoO _x -S-VO _x material towards $Cr(VI)$ reduction under optimized conditions, Fig. S7	S11
9	Cyclic voltamogram of Cr(VI) reduction with CoO _x -S-VO _x , Fig. S8	S12
10	Efficiency of CoO_x -S-VO _x towards MO degradation under normal laboratory condition and under dark, Fig. S9	S13
11	Efficiency of S-VO _x , CoO _x , Co ₃ O ₄ -V ₂ O ₅ and CoO _x -S-VO _x material towards MO degradation, Fig. S10	S14
12	UV spectra and bar diagram of MO degradation for different MO solution concentration, Fig. S11	S15
13	Point of zero charge (PZC) and effect of pH on MO degradation, Fig. S12	S16
14	Photoluminiscence (PL) spectra, Fig. S13	S17
15	Ultraviolet photoelectron spectroscopy (UPS) analysis, Fig. S14	S18
16	Photocatalytic degradation mechanism using electron scavenger, hole scavenger and radical scavenger, Fig. S15	S19
17	Recyclability of CoO _x -S-VO _x , Fig. S16, S17, S18	S20-S21

1. Physical measurement

Physical measurements for different characterizations and analyses were done by the following techniques. The powder-X-ray diffraction (XRD) patterns were recorded in an instrument from BRUKER AXS, D8 FOCUS in the 20 value range of 5-75°. The X-ray photoelectron (XPS) spectra were obtained from a XPS KRATOS (ESCA AXIS 165) spectrometer having Mg K α (1253.6 eV) as radiation source. Before transferring to the analysis chamber, the oven-dried sample was crushed into small pieces, sprinkled on a graphite sheet (double rod), and attached to a normal sample holder. The material was degassed overnight in a vacuum oven. The binding energy value was modified with reference to the 284.8 eV C 1s peak and the peak was deconvoluted using Origin software. Scanning Electron Microscope (SEM) images along with the X-Ray and Elemental mapping analyses were done Σ IGMA instrument manufactured by Carl Zeiss Microscopy. The Transmission Electron Microscope (TEM) images along with energy dispersive X-ray spectroscopy (EDX) analysis was performed on a JEM2010 (JEOL) instrument equipped with a slow scan CCD camera at an acceleration voltage of 200 kV. The UV-Vis experiments were carried out in Shimadzu, UV-2550 spectrophotometer. 500 mL of quartz glass chamber with a Mercury lamp, light source was surrounded by a double jacked quartz immersion with an inlet and outlet of water circulation to ensure a safe temperature for the photocatalytic reaction. The infrared spectra had been recorded on a Perkin- Elmer 2000 FTIR spectrometer within the range of 450-4000 cm⁻¹. The spectra of the solid samples were recorded as KBr pellets through blending the samples with KBr. The Diffuse Reflectance Spectra (DRS) were recorded employing a Hitachi U-3400 spectrophotometer. The cyclic voltammetry (CV) and Mott Schottky (MS) analysis studies were performed in a CHI-600E meter from CH

Instruments using the glassy carbon electrode (GCE) and Pt as a working electrode, Ag/AgCl as reference electrode and Pt wire as a counter electrode, respectively.

2. DRS and Tauc's plot of S-VO_x and CoO_x

Fig. S1 DRS plot of a) CoO_x and b) S-VO_x, Tauc's plot of (a) CoO_x and (b) S-VO_x.

3. XPS of C(1s) of CoO_x- S-VO_x

Fig. S2 XPS of C(1s) taken for peak fitting.

4. Electron Paramagnetic Resonance(EPR) spectra and Thermogravimetric Analysis(TGA) of CoO_x-S-VO_xmaterial.

Fig. S3 (a)EPR spectra CoO_x -S-VO_xand (b)TGA curve of CoO_x -S-VO_x(red) and S-VO_x (black) material.

5. STEM-HAADF-EDX mapping of CoO_x-S-VO_x material in different region.

Fig. S4 STEM-HAADF-EDX mapping of CoO_x-S-VO_x material in different region.

6. Kinetics of Cr(VI) reduction

Fig. S5 (a) UV spectra recorded at 30 sec interval of time in optimized reaction condition and (b) $\ln (C_0/C_t)$ vs time graph showing kinetic study for Cr(VI) reduction.

7. UV spectra and bar diagram of Cr(VI) reduction for different Cr solution concentration with 10 mg CoO_x -S-VO_x and 1 mmol NaBH₄

Fig. S6 (a) UV spectra and (b) bar diagram of Cr(VI) reduction for different Cr solution concentration.

8. Efficiency of S-VO_x, CoO_x, Co₃O₄-V₂O₅ and CoO_x-S-VO_x material towards Cr(VI) reduction under optimized conditions.

Fig. S7 (a) UV spectra and (b) bar diagram representing the Cr(VI) reduction efficiency with $Co_3O_4-V_2O_5$, CoO_x , $S-VO_x$ and CoO_x-S-VO_x .

9. Cyclic voltamogram of Cr(VI) reduction with CoO_x-S-VO_x

Fig. S8 CV of (I) $K_2Cr_2O_7$ (II) $K_2Cr_2O_7$ + CoO_x-S-VO_x and (III) $K_2Cr_2O_7$ + CoO_x-S-VO_x + NaBH₄

10. Efficiency of CoO_x -S-VO_x towards MO degradation under normal laboratory condition and under dark.

Fig. S9 MO degradation efficiency with CoO_x -S-VO_x (a) under normal laboratory condition, (b) under dark, c) comparative bar diagram for MO degradation efficiency with CoO_x -S-VO_x upto 40 min.

11. Efficiency of S-VO_x, CoO_x, Co₃O₄-V₂O₅ and CoO_x-S-VO_x material towards MO degradation

Fig. S10 (a) UV spectra and (b) bar diagram representing the MO degradation efficiency with $Co_3O_4-V_2O_5$, S-VO_x, CoO_x and CoO_x -S-VO_x.

12. UV spectra and bar diagram of MO degradation for different MO solution concentration

Fig. S11 (a) UV spectra and (b) bar diagram of MO degradation for different MO solution concentration.

13. Point of Zero Charge (PZC) determination and effect of pH on MO degradation with CoO_x -S-VO_x.

Fig. S12 (a) Point of zero charge of CoO_x -S-VO_x material and (b) efficiency of MO degradation at different pH.

14. Photoluminiscence (PL) Spectra

Fig. S13 PL spectra recorded at excitation wavelength of (a) 450 nm and (b) 740 nm

15. Ultraviolet Photoelectron Spectroscopy (UPS) analysis.

Fig. S14 a) UPS spectra and b) Valence band energy of CoO_x -S-VO_x

16. Photocatalytic degradation mechanism using electron scavenger (AgNO₃), hole scavenger (KI) and OH[•] radical scavenger (isopropanol) and $O_2^{-\bullet}$ radical scavenger (ascorbic acid)

Fig. S15 Photocatalytic degradation mechanism using electron scavenger (AgNO₃), hole scavenger (KI) and OH[•] radical scavenger (isopropanol) and $O_2^{-•}$ radical scavenger (ascorbic acid).

17. Recyclability test of CoO_x-S-VO_x

Fig. S16 Recyclable efficiency of CoO_x -S-VO_x in case of (a) Cr(VI) reduction and (b) MO degradation.

Fig. S17 PXRD spectra of recycled CoO_x-S-VO_x catalyst after 10th cycle.

Fig. S18 (a-c) SEM images and (d-f) TEM images of recycled CoO_x-S-VO_x catalyst after 10th cycle.