Electronic Supplementary Information

Bridging the gap: An in-depth comparison of the CVT-grown layered transition metal dichalcogenides for supercapacitor application

Muhammad Habib,*^{a†} Zahir Muhammad,^{b†} Yasir A. Haleem,*^c Sajid Farooq,^d Raziq Nawaz,^e Adnan Khalil,^c Fozia Shaheen,^f Hamza Naeem,^g Sami Ullah^h and Rashid Khan^{*i}

- a. Department of Physics, COMSATS University Islamabad, Lahore campus, Lahore, Pakistan.
- b. Hefei Innovation Research Institute School of Integrated Circuit Science & Engineering, Beihang University, Hefei 230013, PR China.
- c. Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan.
- *d.* Centre for Lasers and Applications, Instituto de Pesquisas Energéticas e Nucleares, IPEN— CNEN, Sao Paulo 05508-000, Brazil.
- e. CAS key laboratory of Ion-beam engineering, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China.
- f. Department of Physics, Government College (GC) University, Lahore 54000, Pakistan.
- g. Department of Physics, Division of Science & Technology, University of Education, Lahore 54000, Pakistan.
- h. K.A.CARE Energy Research & Innovation Centre (ERIC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
- i. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.

⁺ These authors contributed equally to this work.

* Correspondence Emails:

muhammad.habib@cuilahore.edu.pk (Muhammad Habib) yasir.haleem@kfueit.edu.pk/hiyasir@mail.ustc.edu.cn (Yasir A. Haleem) rashid@mail.ustc.edu.cn (Rashid Khan)

Figure S1. Cyclic voltammetry of the prepared electrodes at (a) 5, (b) 10, (c) 20 and (d) 40 mV/s scan rates.

Figure S2. Galvanostatic charge-discharge curves measured at (a) 0.2 A/g, (b) 0.4 A/g and (c) 0.5 A/g current densities.

Figure S3. Electrochemical impedance spectroscopy plots of (a) TaS_2 , (b) $TaSe_2$, (c) WS_2 , (d) WSe_2 , (e) ZrS_2 and (f) $ZrSe_2$ with inset circuit models.

Figure S4. Combine stability curves of all the electrodes.

Table S1: A comparison of calculated gravimetric specific capacitances by both CV and GCD.

S #	Material	Capacitance calculated	Capacitance calculated
		by CV	by GCD
1	TaS ₂	230 F/g	187 F/g
2	TaSe ₂	168 F/g	89 F/g
3	WS ₂	186 F/g	154 F/g
4	WSe ₂	224 F/g	203 F/g
5	ZrS ₂	225 F/g	183 F/g
6	ZrSe ₂	209 F/g	159 F/g