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1. MATERIALS AND CHARACTERIZATION TECHNIQUES

All reagents were purchased from Aldrich and used without further purification. 
Anhydrous CH2Cl2 and THF were purchased from Scharlab and dried by using a solvent 
purification system. 1H NMR and 13C NMR spectra were acquired on a Bruker AV400 
spectrometer. The experiments were performed at room temperature in different 
deuterated solvents (CDCl3 CD2Cl2 or DMSO-d6). Chemical shifts are given in ppm relative 
to TMS and the solvent residual peak was used as the internal standard. Infrared spectra 
were recorded on a Bruker Vertex 70 FT-IR spectrometer. The samples were prepared 
on KBr pellets with a concentration of the product of 1-2% (w/w). Mass spectra were 
obtained on a MICROFLEX Bruker (MALDI+) spectrometer with a dithranol 
matrix.Mesogenic behavior was investigated by polarized-light optical microscopy 
(POM) using an Olympus BH-2 polarizing microscope fitted with a Linkam THMS600 hot 
stage. Thermogravimetric analysis (TGA) was performed using a Q5000IR from TA 
instruments at heating rate of 10 ᵒC min-1 under a nitrogen atmosphere. Thermal 
transitions were determined by differential scanning calorimetry (DSC) using a DSC 
Q2000 from TA instruments with powdered samples (2−5 mg) sealed in aluminum pans. 
Glass transition temperatures (Tg) were determined at the half height of the baseline 
jump, and first order transition temperatures were read at the maximum of the 
corresponding peak.
UV-Vis absorption spectra were recorded on an ATI-Unicam UV4-200 
spectrophotometer. Fluorescence measurements were performed using a Perkin-Elmer 
LS 50B fluorescence spectrophotometer.
X-ray diffraction measurements were carried out using an XRD-PANanalytical Empyrean 
diffractometer equipped with platform Scatter X78. Samples were heated until isotrope 
temperature between two kapton films then were allowed to cold down untill room 
temperature. Photographic patterns were recorded with a Pinhole camera (Anton Paar) 
operating with a point-focused Ni-filtered Cu-Kα beam. Samples were contained in 
Lindemann glass capillaries (0.9 or 0.7 mm diameter) and, when necessary, a variable-
temperature attachment was used to heat the sample. The patterns were collected on 
flat photographic film perpendicular to the X-ray beam. 
Electrochemical impedance spectroscopy was recorded with a SI1260 Frequency 
Response Analyser from Schlumberger Instruments in the frequency range from 1 Hz to 
1 MHz, with an AC applied voltage 50 mV amplitude. The sample with ITO coated glass 
slides and spacers was placed inside a variable temperature hotstage equipped with a 
temperature controller (Linkam TMS94). The conductivities were studied as a function 
of temperature between 30°C and isotrope temperature at 5°C intervals. For the 
preparation of the cells, the appropriate amount of the ionic dendrimer was placed onto 
an ITO electrode that was sandwiched with another ITO electrode controlling the 
thickness by using glass spacers (25 μm). The cell was heated up to a few degrees above 
the melting point of the liquid crystal and the cell was pressed to obtain the thin film. 
The impedance spectrum was analysed using Nyquist plots, imaginary (Z’’) versus real 
(Z’) components, see figures S25. The resistance (Rb) was estimated from the 
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intersection of the real axis (Z’) and the high frequency semicircle of the impedance 
spectrum. Alternatively, Rb was taken from the Z’ value at the minimum between the 
high frequency semicircle and low frequency spike. The conductivities σ (S·cm-1) were 
calculated with the formula: σ = d ⁄ (Rb · A)), where d (cm) is the thickness of the film, A 
(cm2) is the area of the film and Rb (Ω) is the resistance of the sample.
After the preparation of the cell, a random orientation of the mesophase was observed 
between electrodes. Nematic samples were mechanically sheared within the cell (in 
order to obtain an alignment of the molecules) at isotropic temperature and then slowly 
cool down to room temperature (0.05 ºC·min-1).
Photocrosslinking of coumarin units (photodimerization) was carried out by exposing 
the aligned LC films of 25 μm of thickness to 325 nm LED light (ThorsLab) for 60 min with 
a UV power of 8 mW/cm2.
Microscopy (TEM) analysis was performed using a FEI Tecnai T20 microscope (FEI 
Company, Waltham, MA, USA) operating at 200 kV. TEM samples were prepared adding 
10 µL of each self-assembly dispersion at an approximately 1.0 mg mL−1 concentration 
on a continuous carbon film-copper grid, and the excess was removed by capillarity 
using filter paper. Then, the grids were stained with uranyl acetate (1% aqueous 
solution), removing the excess again by capillarity using filter paper. 

2. EXPERIMENTAL PROCEDURES

2.1 General procedure for the preparation of ionic complexes

The synthesis of the different acids and pillararene P5N10 was carried out following 
antecedent papersi,ii,iii. Ionic dendrimers were prepared following the previously 
described methodologyiv. A solution of corresponding acid in dry tetrahydrofuran was 
added to a solution of the pillararene P5N10, in approximately 1:1 (primary amine 
groups: carboxylic acid groups) stoichiometry. The mixture was ultrasonicated for 5 min, 
and then it was slowly evaporated at room temperature and dried in vacuum at 40ᵒC 
until the weight remained constant.
AcC11-P5N10. IR (KBr, ν, cm-1): 3423 (-NH3

+), 2949 (=C-H), 2925 (C-H), 1652 (C=O), 1636 
(Ar), 1558 (COO-asym), 1406 (COO-sym), 1217 (C-O). 1H NMR (CDCl3, 298K, 400 MHz, δ, 
ppm): 6.80 (s, 10H), 5.87 (s, 40H), 4.11 (m, 20H), 3.70 (s, 10H), 3.20 (m, 20H), 2.23 (t, 
J=10 Hz, 20H), 1.57 (q, J=8.52 Hz, 20H), 1.24 (m, 130H), 0.87 (t, J=9.2 Hz, 30H). 13C NMR 
(CDCl3, 298K, 100 MHz, δ, ppm): 180.38, 150.19, 129.55, 116.53, 67.62, 39.65, 36.83, 
32.08, 29.83, 29.53, 26.13, 22.84, 14.25.

AcBzC11-P5N10. IR (KBr, ν, cm-1): 3440 (-NH3
+), 2918 (=C-H), 2852 (C-H), 1689 (C=O), 1607 

(Ar), 1539 (COO-asym), 1380 (COO-sym), 1205 (C-O). 1H NMR (CDCl3, 298K, 400 MHz, δ, 
ppm): 7.91 (d, J=8.08 Hz, 20H), 6.82 (s, 10H), 6.72 (d, J=8.08Hz, 20H), 5.07 (s, 30H), 3.85 
(m, 20H), 3.09 (s, 30H), 1.73 (m, 20H), 1.30 (m, 160H), 0.88 (t, J=7.04 Hz, 30H). 13C NMR 
(CDCl3, 298K, 100 MHz, δ, ppm): 172.78, 162.05, 150.41, 131.61, 129.55, 126.66, 115.52, 
113.83, 68.16, 39.48, 32.06, 29.76, 29.64, 29.49, 29.41, 26.21, 22.83, 14.26.



S4

Acd1C11-P5N10. IR (KBr, ν, cm-1): 3327 (-NH3
+), 2940 (=C-H), 2848 (C-H), 1712 (C=O), 1620 

(Ar), 1512 (COO-asym), 1434 (COO-sym), 1296 (C-O).1H NMR 
(CDCl3, 298K, 400 MHz, δ, ppm): 7.25 (s, 20H), 6.84 (s, 10H), 3.97 (m, 60H), 3.70 (m, 
80H), 1.73 (hex, J=6.96 Hz, 60H), 1.43 (hex, J=6.96Hz, 60H), 1.25 (m, 420H) 0.87 (t, J=6.92 
Hz, 90H).13C NMR (DMSO- d6, 298K, 100 MHz, δ, ppm): 167.25, 140.64, 107.78, 73.14, 
68.73, 31.88, 30.41, 29.72, 29.29, 26.41, 22.54.

AcC11Cou-P5N10. IR (KBr, ν, cm-1): 3134 (-NH3
+), 2925 (=C-H), 2851 (C-H), 1724 (C=O), 

1617 (Ar), 1519 (COO-asym), 1426 (COO-sym), 1207 (C-O).1H NMR (DMSO-
d6, 298K, 400 MHz, δ, ppm): 7.98 (d, J=9.48 Hz, 10H), 7.61 (d, J=8.6Hz, 10H), 6.95 (m, 
20H), 6.82 (s, 10H), 6.28 (d, J=9.48 Hz, 10H), 4.06 (t, J=6.51 Hz, 20H), 3.75 (m, 30H), 2.95 
(s, 10H), 2.17 (t, J=7.32 Hz, 20H), 1.73 (m, 20H), 1.33 (m, 140H).13C NMR (DMSO- 
d6, 298K, 100 MHz, δ, ppm): 174.55, 161.90, 160.33, 155.43, 150.94, 144.37, 134.59, 
129.48, 116.66, 112.74, 112.37, 112.23, 101.12, 68.29, 59.96, 41.26, 33.73, 28.94, 28.86, 
28.74, 28.70, 28.57, 28.43, 25.42, 24.33.

AcBzC11Cou-P5N10. IR (KBr, ν, cm-1): 3437 (-NH3
+), 2927 (=C-H), 2852 (C-H), 1731 (C=O), 

1610 (Ar), 1558 (COO-asym), 1387 (COO-sym), 1206 (C-O).1H NMR 
(CDCl3, 298K, 400 MHz, δ, ppm): 7.97 (d, J=9.48 Hz, 10H), 7.85 (d, J=8.76 Hz, 20H), 7.60 
(d, J=8.6Hz, 10H), 6.94 (m, 40H), 6.83 (s, 10H), 6.27 (d, J=9.48 Hz, 10H), 4.06 (t, J=6.48 
Hz, 20H), 3.99 (t, J=6.48 Hz, 20H), 3.91 (s, 20H), 3.74 (s, 10H), 3.03 (s, 20H), 1.72 (m, 40H), 
1.33 (m, 140H).13C NMR (DMSO- d6, 298K, 100 MHz, δ, ppm): 167.51, 161.90, 161.86, 
160.32, 155.43, 151.17, 144.35, 131.21, 131.14, 129.47, 124.23, 113.98, 113.88, 112.72, 
112.36, 112.23, 101.11, 71.25, 68.27, 67.67, 43.40, 30.70, 28.95, 28.90, 28.73, 28.69, 
28.55, 28.41, 25.44, 25.40.

Acd1C11Cou-P5N10. IR (KBr, ν, cm-1): 3442 (-NH3
+), 2923 (=C-H), 2848 (C-H), 1736 (C=O), 

1617 (Ar), 1555 (COO-asym), 1369 (COO-sym), 1273 (C-O).1H NMR 
(CDCl3, 298K, 400 MHz, δ, ppm): 7.60 (d, J=9.48 Hz, 30H), 7.33 (d, J=8.6 Hz, 30H), 7.27 (s, 
10H), 6.77 (m, 60H), 6.21 (d, J=9.44 Hz, 30H), 3.97 (m, 120H), 1.77 (m, 120H), 1.43 (m, 
120H), 1.29 (m, 340H).13C NMR (CDCl3, 298K, 100 MHz, δ, ppm): 170.53, 162.48, 161.33, 
143.18, 143.54, 128.67, 112.83, 112.79, 112.23, 108.50, 101.11, 73.51, 68.68, 29.82, 
29.60, 29.49, 29.31, 29.21, 26.12, 26.04.

General Procedure for the preparation of the aggregates. For the preparation of the self-
assemblies, a solution of 5 mg/mL of the amphiphilic ionic pillararene in THF was 
prepared, and Milli-Q water was gradually added while self-assembly was followed by 
measuring the turbidity in UV. When a critical water content was reached, a high 
increase in turbidity happened, indicating that the self-assembling process took place. 
Once turbidity reached an almost constant value, the mixture was dialyzed against water 
to remove the organic solvent using a Spectra/Por dialysis membrane (MWCO 1000) for 
3 days. Water suspensions of the aggregates with a concentration around 2 mg/mL were 
obtained. Nile Red encapsulation: 119 µL of a solution of Nile Red in DCM (510–6 M) 
was added into flasks and then the solvent evaporated. Afterwards, a water suspension 
of nanoparticles of concentration 2.0 mg/mL was added to the flask. The vesicles 
suspensions were prepared by diluting the former 2 mg/mL nanoparticle suspension. In 
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each flask a final concentration of 1.010–6 M of Nile Red was reached. These solutions 
were stirred overnight to reach equilibrium before fluorescence was measured. The 
emission spectra of Nile Red were registered from 560 to 700 nm while exciting at 550 
nm.
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3. SUPPLEMENTARY FIGURES

3.1 NMR Spectra

Figure S1. H-NMR spectrum of AcC11-P5N10 CDCl3, 298K, 400 MHz.

Figure S2. C-NMR spectrum of AcC11-P5N10 CDCl3, 298K, 100 MHz.
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Figure S3. H-NMR spectrum of AcBzC11-P5N10 CDCl3, 298K, 400 MHz.

Figure S4. C-NMR spectrum of AcBzC11-P5N10 CDCl3, 298K, 100 MHz.
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Figure S5. H-NMR spectrum Acd1C11-P5N10 CDCl3, 298K, 400 MHz.

Figure S7. H-NMR spectrum of AcC11Cou-P5N10 DMSO-d6, 298K, 400 MHz.
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Figure S6. HSQC and HMBC spectra of Acd1C11-P5N10 CDCl3, 
298K.
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Figure S8. C-NMR spectrum of AcC11Cou-P5N10 DMSO-d6, 298K, 100 MHz.
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Figure S9. H-NMR spectrum of AcBzC11Cou-P5N10 DMSO-d6, 298K, 400 MHz.
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Figure S10. C-NMR spectrum of AcBzC11Cou-P5N10 DMSO-d6, 298K, 100 MHz.

Figure S11. C-NMR comparation of P5N10, AcBzC11Cou-P5N10 and AcBzC11Cou DMSO-d6, 298K, 100 MHz.

Figure S12. H-NMR spectrum of Acd1C11Cou-P5N10 CDCl3, 298K, 400 MHz.
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Figure S13. HSQC and HMBC spectra of Acd1C11Cou-P5N10 CDCl3, 298K.

Figure S14. 1H-1H NOESY spectrum of AcBzC11Cou-P5N10 CDCl3, 298K.
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3.2 IR spectra
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Figure S15. IR spectrum of AcC11-P5N10
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                                                     Figure S16. IR spectrum of AcBzC11-P5N10
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Figure S17. IR spectrum of Acd1C11-P5N10
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Figure S18. IR spectrum of AcC11Cou-P5N10
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Figure S19. IR spectrum of AcBzC11Cou-P5N10
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Figure S20. IR spectrum of Acd1C11Cou-P5N10
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3.3 POM textures

Figure S21. MOP pictures in the cooling process at room temperature for: a) AcC11-P5N10, b) AcBzC11-P5N10, c) 
Acd1C11-P5N10, d) AcC11Cou-P5N10 e) AcBzC11Cou-P5N10 f) Acd1C11Cou-P5N10

3.4 DSC thermograms

Figure S22. DSC thermograms of a) AcC11-P5N10, b) AcBzC11-P5N10 and c) Acd1C11-P5N10

Figure S23. DSC thermograms of a) AcC11Cou-P5N10, b) AcBzC11Cou-P5N10 and c) Acd1C11Cou-P5N10
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3.5 X-ray diffraction 
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Figure S24. X-Ray diffractograms of: a) AcC11-P5N10, b) AcBzC11-P5N10, c) Acd1C11-P5N10, d) AcC11Cou-P5N10, e) 
AcBzC11Cou-P5N10 and f) Acd1C11Cou-P5N10.

3.6 Nyquist Plots

Figure S25. Nyquist plots of a) AcC11-P5N10 at 75ºC, b) AcBzC11-P5N10 at 125ºC, c) Acd1C11-P5N10 at 20ºC, d) 
AcC11Cou-P5N10 at 120ºC e) AcBzC11Cou-P5N10 at 135ºC and f) Acd1C11Cou-P5N10 at 55ºC.
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3.7 TEM images

Figure S26. TEM images of AcC11Cou-P5N10 a) before d) after photopolymerization, AcBzC11Cou-P5N10 b) before e) 
after photopolymerization and Acd1C11Cou-P5N10 c) before f) after photopolymerization. 
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