Electronic Supplementary Information

Taming of 4-Azido-3,5-dinitropyrazole Based Energetic Materials

Priyanka Das, ^[a] Prachi Bhatia, ^[a] Krishna Pandey, ^[a]] and Dheeraj Kumar*^[a]

^[a] Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India. E-mail: dheeraj.kumar@cy.iitr.ac.in

Table of content:

1.	Crystal structure data	2
2.	Isodesmic Reaction	13
3.	NMR spectra	13
4.	IR spectra	31
5.	Mass Spectra	39
6.	Thermal analysis	40

1. Crystal structure data

Table 1: Crystal data and structure refinement for Compound 4.

Identification code	cu_PKP_28092022_TVK_DNAP_AM_OXD_cu2_0m_a (2)
Empirical formula	$C_{6}H_{4}N_{10}O_{5}$
Formula weight	296.19
Temperature/K	295(2)
Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	14.708(3)
b/Å	5.921(2)
c/Å	25.458(5)
α/°	90.00(3)
β/°	90.00(3)
γ/°	90.00(3)
Volume/Å ³	2216.9(10)
Z	8
$\rho_{calc}g/cm^3$	1.775
μ/mm^{-1}	1.368
F(000)	1200.0
Crystal size/mm ³	$0.263\times0.108\times0.102$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.944 to 120.058
Index ranges	$-16 \le h \le 16, -6 \le k \le 6, -28 \le l \le 28$
Reflections collected	26328
Independent reflections	3239 [$R_{int} = 0.0359$, $R_{sigma} = 0.0218$]
Data/restraints/parameters	3239/1/395
Goodness-of-fit on F ²	1.133
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0423, wR_2 = 0.1161$
Final R indexes [all data]	$R_1 = 0.0427, wR_2 = 0.1167$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.23
Flack parameter	0.23(6)
CCDC number	2287540

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 4. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
O ₁	7128(3)	16070(7)	6612.6(18)	79.1(13)
O ₂	6339(3)	14717(7)	5984(2)	79.5(13)

O ₃	8311(3)	6908(5)	5429.0(14)	58.8(9)
O_4	9678(3)	7878(7)	5660.0(19)	79.8(13)
O ₅	9370.2(17)	6276(5)	7263.8(12)	40.2(7)
N_1	6996(2)	14721(6)	6260.0(16)	45.2(8)
N_2	8838(3)	8199(6)	5639.5(15)	43.7(9)
N ₃	6840(2)	10595(7)	5546.5(14)	50.2(10)
N_4	6879(2)	9218(6)	5177.5(14)	43.0(8)
N_5	6766(3)	8095(7)	4825.8(19)	61.9(11)
N ₆	8970(2)	11453(6)	6220.7(13)	35.3(7)
N_7	8485(2)	13190(6)	6403.8(13)	37.9(8)
N_8	10616(2)	8228(6)	7057.4(15)	41.4(8)
N9	9103(2)	8021(6)	6908.2(13)	39.1(8)
N ₁₀	10685(3)	5039(7)	7631.2(16)	46.3(10)
C1	7683(3)	13006(6)	6165.2(16)	35.7(9)
C ₂	7619(3)	11143(6)	5823.7(15)	35.3(8)
C ₃	8482(2)	10177(7)	5879.9(14)	33.6(8)
C4	9889(3)	11084(8)	6450.5(15)	37.4(9)
C5	9859(2)	9054(7)	6811.1(14)	30.5(8)
C ₆	10276(3)	6512(7)	7327.6(15)	34.1(8)

Table 3: Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 4. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U 13	U12
O ₁	59(2)	73(2)	106(3)	-50(2)	-3(2)	14.2(18)
O ₂	59(2)	76(3)	103(3)	-25(2)	-33(2)	29.8(19)
O ₃	53(2)	53.8(19)	70(2)	-22.6(17)	-9.7(18)	4.3(15)
O ₄	51(2)	87(3)	101(3)	-41(3)	-5(2)	21.7(19)
O5	27.6(14)	46.4(15)	46.5(14)	7.7(13)	-4.4(11)	-3.8(11)
N_1	39.5(19)	38.6(19)	58(2)	-1.4(16)	-3.7(17)	3.5(16)
N_2	39(2)	48(2)	44.3(18)	-5.6(16)	-3.2(16)	9.2(15)
N ₃	35(2)	64(2)	52(2)	-22(2)	-9.3(15)	5.3(18)
N ₄	35.4(19)	49(2)	44(2)	0.3(19)	-5.1(15)	-3.1(15)
N_5	59(3)	64(3)	62(3)	-15(2)	-10(2)	-0.5(19)
N_6	28.6(18)	38.9(18)	38.4(17)	-0.8(13)	-5.3(14)	-2.0(13)
N7	36.1(19)	33.0(17)	44.4(19)	0.3(13)	-3.1(14)	-0.1(14)
N_8	28.9(17)	51(2)	44.0(18)	6.7(15)	-7.5(15)	-3.5(14)
N9	26.5(17)	41.9(19)	49(2)	5.7(15)	-7.6(13)	2.5(13)
N ₁₀	26(2)	60(3)	53(2)	16.2(18)	-9.1(17)	-7.6(17)
C ₁	33(2)	35.2(19)	39(2)	-0.8(17)	2.4(17)	2.9(15)
C ₂	37(2)	34(2)	34.6(19)	2.7(15)	-3.4(16)	-0.8(16)
C ₃	30.2(18)	38(2)	32.8(17)	-1.1(15)	-1.1(15)	1.8(15)
C4	30(2)	42(2)	41(2)	1.9(17)	-8.0(16)	-0.9(15)
C ₅	23.1(18)	35(2)	33.3(17)	-3.8(16)	-4.2(14)	0.6(14)

Atom	U11	U22	U33	U23	U13	U12
C ₆	31(2)	38.8(19)	33.0(19)	-1.9(16)	-1.1(15)	-6.9(15)
O_{1_1}	65(2)	69(3)	98(3)	-42(2)	-4(2)	15.6(18)
O _{2_1}	50(2)	51.5(19)	77(2)	2.8(16)	-11.0(18)	13.6(15)
O _{3_1}	53(2)	44.3(17)	61.1(19)	-16.0(14)	-7.3(16)	-1.7(13)
O_{4_1}	45(2)	86(3)	94(3)	-46(3)	-13(2)	22.0(18)
O _{5_1}	29.9(14)	52.5(17)	42.6(15)	4.7(13)	6.5(12)	11.5(12)
N_{1_1}	35.2(19)	38.7(18)	59(2)	-1.5(16)	4.9(17)	1.2(14)
N_{2_1}	35.3(19)	45.6(19)	37.9(17)	-5.4(15)	-4.3(15)	3.0(13)
N _{3_1}	36(2)	58(2)	52(2)	-8.9(19)	-6.0(15)	5.1(16)
N_{4_1}	39.1(19)	46(2)	44(2)	3(2)	0.0(15)	-4.7(15)
N _{5_1}	55(2)	62(3)	54(2)	-10(2)	-11.6(19)	-7.0(18)
N_{6_1}	33.3(17)	33.5(16)	34.9(16)	-0.3(12)	2.5(13)	0.1(13)
N_{7_1}	38(2)	33.5(18)	38.3(17)	0.5(13)	0.6(15)	-2.0(12)
N_{8_1}	26.4(17)	45.7(18)	43.5(18)	4.4(14)	-1.4(14)	-0.1(13)
N _{9_1}	30.5(18)	49.0(19)	39.0(17)	2.5(14)	0.8(14)	2.6(14)
N_{10_1}	28.5(18)	57(2)	52(2)	16.8(17)	1.8(15)	3.6(15)
C_{1_1}	38(2)	32(2)	40(2)	5.0(16)	1.8(18)	-0.7(15)
C_{2_1}	27.3(19)	38.0(19)	33(2)	1.8(15)	1.6(15)	-2.0(15)
C _{3_1}	31.0(19)	31.7(18)	31.8(17)	3.1(15)	-1.1(15)	-1.8(15)
C_{4_1}	27.0(19)	45(2)	45(2)	-0.5(18)	-3.6(16)	-3.5(15)
C _{5_1}	24.3(17)	37(2)	32.8(17)	-10.6(16)	-0.3(14)	-1.4(14)
C _{6_1}	22.5(19)	50(2)	39(2)	-2.3(17)	-0.4(16)	-2.0(15)

Table 4: Bond Lengths for 4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O ₁	N_1	1.217(5)	O_{1_1}	N_{1_1}	1.211(5)
O ₂	N_1	1.196(5)	O_{2_1}	N_{1_1}	1.211(5)
O ₃	N_2	1.214(5)	O _{3_1}	N_{2_1}	1.239(5)
O_4	N_2	1.251(5)	O4_1	N_{2_1}	1.200(5)
O ₅	N ₉	1.429(4)	O _{5_1}	N _{9_1}	1.434(4)
O ₅	C ₆	1.349(5)	O _{5_1}	C_{6_1}	1.340(5)
N ₃	N_4	1.245(5)	N_{3_1}	N_{4_1}	1.253(6)
N_4	N_5	1.127(6)	N_{4_1}	N_{5_1}	1.109(5)
N ₆	N ₇	1.336(5)	N_{6_1}	N7_1	1.333(5)
N ₆	C ₃	1.357(5)	N_{6_1}	C_{3_1}	1.380(5)
N8	C5	1.368(5)	N_{6_1}	C_{4_1}	1.463(5)
C1	N_1	1.452(5)	N_{7_1}	C_{1_1}	1.333(6)
C1	N_7	1.332(5)	N_{8_1}	C _{5_1}	1.357(5)
C1	C_2	1.408(6)	N_{8_1}	C_{6_1}	1.316(6)
C ₂	N ₃	1.383(5)	N _{9_1}	C_{5_1}	1.299(5)
C ₂	C ₃	1.399(6)	N_{10_1}	C _{6_1}	1.324(6)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C ₃	N_2	1.422(5)	C_{1_1}	N_{1_1}	1.449(6)
C4	N ₆	1.489(5)	C_{2_1}	N_{3_1}	1.390(6)
C5	N9	1.294(5)	C_{2_1}	C_{1_1}	1.393(6)
C5	C4	1.513(5)	C_{3_1}	N_{2_1}	1.420(5)
C ₆	N ₈	1.325(5)	C_{3_1}	C_{2_1}	1.397(5)
C ₆	N ₁₀	1.312(6)	C_{4_1}	C_{5_1}	1.487(6)

Table 5: Bond Angles for 4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C ₆	O 5	N9	105.9(3)	C_{6_1}	O _{5_1}	N9_1	106.1(3)
O_1	N_1	C1	118.1(4)	O_{1_1}	N_{1_1}	O_{2_1}	124.4(4)
O_2	N_1	O ₁	124.3(4)	O_{1_1}	N_{1_1}	C_{1_1}	118.2(4)
O ₂	N_1	C1	117.6(4)	O_{2_1}	N_{1_1}	C_{1_1}	117.4(4)
O ₃	N_2	O_4	123.6(4)	O _{3_1}	N_{2_1}	C_{3_1}	117.4(3)
O ₃	N_2	C ₃	118.2(4)	O4_1	N_{2_1}	O _{3_1}	122.8(3)
O_4	N_2	C ₃	118.2(4)	O_{4_1}	N_{2_1}	C_{3_1}	119.7(3)
N_4	N ₃	C ₂	120.0(4)	N_{4_1}	N_{3_1}	C_{2_1}	121.2(3)
N_5	N_4	N ₃	168.1(4)	N_{5_1}	N_{4_1}	N_{3_1}	168.3(4)
N_7	N_6	C ₃	111.6(3)	N_{7_1}	N_{6_1}	C_{3_1}	110.1(3)
N_7	N_6	C4	117.5(3)	N_{7_1}	N_{6_1}	C_{4_1}	119.2(3)
C ₃	N_6	C4	130.6(3)	C_{3_1}	N_{6_1}	C_{4_1}	130.7(3)
C ₁	N7	N ₆	104.6(3)	N_{6_1}	N7_1	C_{1_1}	105.6(3)
C ₆	N_8	C5	101.8(3)	C_{6_1}	N_{8_1}	C5_1	103.2(3)
C5	N9	O ₅	103.0(3)	C _{5_1}	N _{9_1}	O _{5_1}	102.8(3)
N_7	C1	N_1	118.9(4)	N_{7_1}	C_{1_1}	N_{1_1}	117.8(4)
N_7	C1	C ₂	113.9(3)	N_{7_1}	C_{1_1}	C_{2_1}	113.9(3)
C_2	C1	N_1	127.2(4)	C_{2_1}	C_{1_1}	N_{1_1}	128.1(4)
N_3	C ₂	C1	123.6(4)	N_{3_1}	C_{2_1}	C_{1_1}	123.2(4)
N ₃	C ₂	C ₃	135.0(4)	N _{3_1}	C_{2_1}	C_{3_1}	134.9(4)
C ₃	C ₂	C1	101.3(3)	C_{1_1}	C_{2_1}	C_{3_1}	101.8(3)
N_6	C ₃	N_2	122.6(3)	N_{6_1}	C_{3_1}	N_{2_1}	121.6(3)
N_6	C ₃	C_2	108.6(3)	N_{6_1}	C_{3_1}	C_{2_1}	108.6(3)
C_2	C ₃	N ₂	128.8(4)	C_{2_1}	C _{3_1}	N_{2_1}	129.7(3)
N_6	C_4	C ₅	109.2(3)	N_{6_1}	C_{4_1}	C_{5_1}	111.2(3)
N_8	C5	C4	122.6(3)	N_{8_1}	C_{5_1}	C_{4_1}	123.5(3)
N9	C5	N ₈	116.3(4)	N9_1	C _{5_1}	N_{8_1}	115.4(4)
N9	C5	C4	121.1(3)	N9_1	C_{5_1}	C_{4_1}	121.0(3)
N_8	C ₆	O ₅	113.0(3)	N_{8_1}	C_{6_1}	O _{5_1}	112.4(3)
N ₁₀	C ₆	O ₅	117.1(4)	N_{8_1}	C_{6_1}	N_{10_1}	129.4(4)
N ₁₀	C ₆	N ₈	130.0(4)	N_{10_1}	C _{6_1}	O _{5_1}	118.2(4)

AZ_AMS_Rt_Cu
$C_6H_6N_{12}O_7$
358.23
298.00
monoclinic
$P2_1/n$
13.3320(8)
7.5876(3)
14.6125(8)
90
116.909(7)
90
1318.12(14)
4
1.805
1.441
728.0
$0.123 \times 0.112 \times 0.095$
CuKa ($\lambda = 1.54184$)
7.46 to 137.928
$-16 \le h \le 15, -9 \le k \le 7, -17 \le l \le 17$
7678
2424 [$R_{int} = 0.0306$, $R_{sigma} = 0.0241$]
2424/0/242
1.065
$R_1 = 0.0351, wR_2 = 0.0861$
$R_1 = 0.0448, wR_2 = 0.0935$
0.19/-0.18
2287541

Table 6: Crystal data and structure refinement for Compound 7.

Table 7: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 7. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
O ₁	8829.0(14)	-3323(2)	6857.5(11)	59.6(4)
O_2	10227.0(13)	-3613(2)	6505.6(13)	63.2(5)
O ₃	8791.9(13)	67(2)	2825.2(12)	58.1(4)
O_4	7205.1(12)	1202(2)	2593.7(11)	55.1(4)
O ₅	7050.7(10)	5133.4(17)	4621.4(11)	45.9(4)
O ₆	3738.6(11)	5619.8(19)	3484.5(12)	52.6(4)

O ₇	4030.9(13)	8333.9(18)	3950.4(12)	53.3(4)
N_1	9307.1(13)	-3029(2)	6331.1(12)	39.8(4)
N_2	8030.5(13)	281(2)	3064.3(12)	37.3(4)
N ₃	10001.6(13)	-2345(2)	4662.9(12)	44.0(4)
N_4	10178.7(12)	-2388(2)	3900.5(12)	39.8(4)
N_5	10529.8(16)	-2576(3)	3342.8(14)	62.5(6)
N_6	7443.3(12)	-304.1(18)	4396.8(11)	30.7(3)
N_7	7803.0(12)	-1139.1(18)	5297.9(11)	32.5(3)
N_8	5506.1(11)	3517.3(17)	3946.9(10)	28.5(3)
N ₉	7396.7(13)	3374(2)	4586.5(14)	43.4(4)
N ₁₀	5504.0(13)	6718.1(19)	4263.1(12)	38.6(4)
N11	4401.6(14)	6849(2)	3883.1(12)	38.3(4)
C1	8744.8(14)	-1934(2)	5433.8(13)	31.4(4)
C_2	9028.3(14)	-1660(2)	4631.2(13)	31.5(4)
C ₃	8160.2(14)	-580(2)	3978.0(13)	31.1(4)
C_4	6354.8(14)	590(2)	4005.9(14)	32.2(4)
C ₅	6458.6(13)	2531(2)	4191.8(13)	29.8(4)
C ₆	5919.1(14)	5101(2)	4230.8(13)	31.3(4)
N ₁₂	3342.8(15)	11843(2)	3234.3(16)	40.4(4)

Table 8: Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 7. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U 33	U23	U13	U12
O ₁	67.1(10)	72.8(11)	47.8(8)	18.7(8)	33.7(8)	24.5(9)
O ₂	46.4(9)	72.5(11)	68.0(10)	28.0(9)	23.5(8)	29.8(8)
O ₃	61.4(10)	62.6(10)	66.2(10)	18.8(8)	42.7(9)	17.9(8)
O_4	47.6(9)	58.5(10)	54.1(8)	21.4(7)	18.4(7)	19.3(7)
O ₅	29.5(7)	27.1(7)	71.9(9)	-9.3(6)	14.9(7)	-4.1(5)
O ₆	33.2(7)	38.6(8)	73.3(10)	1.4(7)	13.0(7)	5.9(6)
O 7	74.8(10)	31.5(8)	68.9(9)	12.5(7)	45.9(9)	25.4(7)
N_1	37.3(9)	37.1(9)	39.5(8)	2.5(7)	12.4(7)	7.9(7)
N_2	38.2(9)	31.1(8)	41.7(8)	1.6(6)	17.3(7)	1.9(7)
N ₃	36.1(9)	54.2(11)	45.3(9)	5.8(8)	21.7(8)	14.8(8)
N_4	29.5(8)	41.9(10)	42.8(9)	-3.6(7)	11.9(7)	6.1(7)
N_5	55.3(12)	85.5(16)	50.8(11)	4.7(10)	27.6(10)	22.9(11)
N ₆	27.0(7)	24.4(7)	37.2(7)	0.2(6)	11.5(6)	3.6(6)
N7	32.9(8)	25.4(8)	36.5(7)	0.3(6)	13.3(7)	3.6(6)
N ₈	25.9(7)	22.2(7)	35.7(7)	0.7(5)	12.3(6)	1.8(5)
N ₉	28.8(8)	29.6(9)	65.2(11)	-6.3(7)	15.5(8)	1.6(6)
N ₁₀	39.0(9)	24.5(8)	51.3(9)	-2.7(6)	19.5(7)	2.4(6)
N ₁₁	46.8(9)	28.4(8)	43.4(8)	8.3(6)	23.7(8)	11.0(7)
C ₁	28.8(9)	24.6(8)	35.2(8)	-0.2(7)	9.5(7)	3.5(7)
C ₂	26.4(9)	25.0(9)	39.6(9)	-4.2(7)	11.9(7)	0.6(7)

C ₃	29.7(9)	25.3(8)	35.8(8)	-2.2(7)	12.8(7)	0.7(7)
C_4	24.0(8)	25.4(9)	43.8(9)	0.8(7)	12.3(7)	4.6(7)
C ₅	24.9(8)	26.4(9)	35.3(8)	0.0(7)	11.2(7)	1.6(7)
C ₆	28.9(9)	25.5(9)	36.6(9)	-1.7(7)	12.4(8)	-0.1(7)
N ₁₂	31.1(9)	33.3(9)	54.4(11)	1.0(8)	17.2(9)	-1.0(7)

 Table 9: Bond Lengths for 7.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O ₁	N_1	1.221(2)	N ₆	N_7	1.339(2)
O ₃	N_2	1.225(2)	N ₆	C ₃	1.364(2)
O_4	N_2	1.220(2)	N ₆	C_4	1.463(2)
O ₅	N ₉	1.4206(19)	N ₇	C1	1.324(2)
O 5	C ₆	1.350(2)	N ₈	C5	1.375(2)
O ₆	N11	1.235(2)	N8	C ₆	1.308(2)
O 7	N11	1.2517(19)	N9	C5	1.286(2)
N_1	O ₂	1.218(2)	N ₁₀	C_6	1.356(2)
N_1	C1	1.443(2)	N ₁₁	N ₁₀	1.319(2)
N_2	C ₃	1.425(2)	C ₂	C1	1.401(2)
N ₃	C ₂	1.379(2)	C ₂	C ₃	1.387(2)
N_4	N ₃	1.239(2)	C5	C_4	1.493(2)
N_4	N ₅	1.117(2)			

Table 10: Bond Angles for 7.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C ₆	O_5	N ₉	106.63(13)	O ₇	N ₁₁	N ₁₀	116.05(17)
O ₁	N_1	C1	118.23(15)	N7	C1	N_1	117.77(16)
O ₂	N_1	O ₁	124.38(17)	N7	C1	C ₂	113.80(15)
O ₂	N_1	C1	117.38(16)	C ₂	C1	N_1	128.33(16)
O ₃	N_2	C ₃	116.24(15)	N ₃	C ₂	C1	121.49(16)
O_4	N_2	O ₃	124.59(16)	N ₃	C ₂	C ₃	136.51(17)
O_4	N_2	C ₃	119.14(16)	C ₃	C ₂	C1	101.92(15)
N_4	N ₃	C ₂	122.62(16)	N ₆	C ₃	N_2	122.52(15)
N_5	N_4	N ₃	166.41(19)	N_6	C ₃	C ₂	108.53(15)
N7	N_6	C ₃	110.90(13)	C ₂	C ₃	N_2	128.71(16)
N7	N_6	C4	116.97(14)	N_6	C_4	C5	113.10(14)
C ₃	N_6	C4	131.93(14)	N_8	C5	C_4	119.43(14)
C1	N_7	N ₆	104.84(14)	N9	C5	N_8	116.24(15)
C ₆	N ₈	C ₅	102.17(14)	N9	C5	C4	124.33(15)
C5	N9	O ₅	102.60(13)	O_5	C ₆	N ₁₀	111.36(15)
N ₁₁	N ₁₀	C ₆	116.63(15)	N_8	C ₆	O5	112.36(15)
O ₆	N ₁₁	O 7	119.55(16)	N ₈	C ₆	N ₁₀	136.25(16)
O ₆	N ₁₁	N ₁₀	124.40(15)				

Identification code	tatotdk_0m_a
Empirical formula	$C_9H_9N_{19}O_7$
Formula weight	495.35
Temperature/K	310(2)
Crystal system	triclinic
Space group	P-1
a/Å	5.9663(7)
b/Å	12.5080(15)
c/Å	13.4585(17)
a/°	75.226(4)
β/°	80.633(4)
$\gamma/^{\circ}$	77.189(4)
Volume/Å ³	941.0(2)
Z	2
$\rho_{calc}g/cm^3$	1.748
μ/mm ⁻¹	0.151
F(000)	504.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.43 to 51.384
Index ranges	$-7 \le h \le 7, -15 \le k \le 15, -16 \le 1$ ≤ 16
Reflections collected	27517
Independent reflections	$3580 [R_{int} = 0.0661, R_{sigma} = 0.0379]$
Data/restraints/parameters	3580/0/316
Goodness-of-fit on F ²	0.877
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0532, wR_2 = 0.1429$
Final R indexes [all data]	$R_1 = 0.0954, wR_2 = 0.1784$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.31
CCDC number	2287542
	•

 Table 11: Crystal data and structure refinement for Compound 9.

Table 12: Fractional Atomic Coordinates (\times 104) and Equivalent Isotropic Displacement Parameters (Å2 \times 103) for Compound 9. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	у	Z	U(eq)
05	1121(4)	7454.3(18)	2508.7(17)	68.4(6)
N15	6526(4)	2266.1(19)	984.9(19)	55.5(6)

N6	637(4)	3867(2)	3858.2(19)	57.3(7)
N11	6345(5)	6818(2)	1068.9(19)	58.2(7)
07	7864(5)	7351(2)	578(2)	86.4(8)
06	6637(4)	5798.7(18)	1117(2)	84.8(8)
N7	2202(4)	4036(2)	4376(2)	59.3(7)
N13	4597(4)	3751(2)	1406.5(19)	58.5(7)
N8	2550(5)	5759(2)	2219.4(19)	58.3(7)
01	5493(5)	3730(2)	5611(2)	89.7(8)
N19	7947(5)	1310(2)	686(2)	62.8(7)
O4	-2627(6)	2953(3)	3246(2)	93.6(9)
N10	4531(5)	7387(2)	1518(2)	64.8(7)
N1	5005(5)	2895(3)	5466(2)	66.7(7)
N16	4402(5)	1007(2)	1442(2)	70.6(8)
N14	3133(5)	2956(2)	1767(2)	64.6(7)
N12	8379(5)	3841(2)	510(2)	71.6(8)
N2	-919(6)	2319(3)	3576(2)	75.3(8)
N9	-469(5)	6768(2)	3037(2)	71.5(8)
O2	6058(5)	1938(2)	5755(2)	97.4(9)
N3	2575(7)	961(3)	5058(3)	86.2(10)
C1	3118(5)	3016(3)	4879(2)	55.2(7)
C6	2875(6)	6798(2)	2051(2)	56.3(8)
03	-377(6)	1322(3)	3557(3)	112.9(11)
C7	6639(5)	3339(2)	938(2)	53.2(7)
C2	2173(6)	2161(3)	4700(2)	60.5(8)
C3	581(6)	2757(3)	4033(2)	58.4(8)
N18	7037(6)	-476(2)	895(3)	94.7(11)
C8	4432(6)	2088(3)	1465(3)	60.0(8)
C5	480(6)	5796(3)	2836(2)	61.0(8)
N17	2640(6)	384(3)	1812(3)	100.1(12)
C9	6551(6)	581(3)	985(3)	66.1(9)
C4	-729(6)	4828(3)	3202(3)	71.4(9)
N4	2948(8)	643(3)	5880(4)	106.7(13)
N5	3368(14)	131(5)	6710(4)	187(3)

Table 13: Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 9. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U12	U 13	U23
05	72.5(16)	52.2(13)	72.5(15)	5.4(11)	6.9(12)	-23.7(11)
N15	53.6(16)	44.6(14)	67.6(17)	1.4(11)	-3.6(13)	-22.5(12)
N6	54.8(16)	56.9(16)	60.8(16)	-9.6(13)	2.2(13)	-20.3(13)
N11	75.1(19)	42.0(14)	54.6(15)	-2.9(13)	2.1(14)	-18.0(12)
07	101(2)	54.3(14)	94.5(19)	-14.2(14)	32.8(16)	-27.8(13)

06	87.3(18)	45.6(14)	119(2)	-8.6(12)	23.7(16)	-38.7(13)
N7	57.4(16)	55.8(16)	68.3(17)	-10.2(13)	-4.2(14)	-22.5(13)
N13	60.2(16)	50.2(15)	65.3(16)	2.7(13)	-3.2(13)	-26.2(12)
N8	63.8(17)	49.7(15)	58.7(15)	-0.4(12)	-3.7(13)	-17.8(12)
01	89(2)	78.4(18)	115(2)	-28.3(15)	-30.4(17)	-22.6(16)
N19	57.3(16)	46.5(14)	83.2(19)	2.8(12)	-0.5(14)	-27.0(13)
O4	84(2)	122(3)	86(2)	-39.0(19)	-15.0(16)	-23.1(17)
N10	77.9(19)	42.9(14)	66.5(17)	1.4(14)	9.2(15)	-20.7(13)
N1	59.3(18)	64.8(19)	73.8(19)	-10.0(15)	-3.6(15)	-15.2(15)
N16	57.4(18)	55.7(17)	100(2)	-5.9(14)	0.3(16)	-29.5(15)
N14	56.5(16)	63.5(17)	78.4(19)	-3.5(14)	-3.5(14)	-33.0(14)
N12	68.2(19)	49.7(16)	94(2)	-4.9(14)	13.6(16)	-30.1(14)
N2	81(2)	90(3)	66.5(19)	-35(2)	4.8(17)	-30.7(17)
N9	67.4(19)	63.6(18)	74.6(19)	2.0(15)	3.9(15)	-18.9(15)
O2	90(2)	77(2)	120(2)	0.0(16)	-35.0(18)	-12.8(17)
N3	122(3)	57(2)	85(2)	-16.7(19)	-20(2)	-20.7(18)
C1	53.1(18)	53.2(19)	59.3(18)	-9.5(15)	2.8(15)	-18.7(14)
C6	67(2)	46.8(18)	51.1(17)	6.8(15)	-3.9(15)	-20.4(14)
03	144(3)	95(2)	126(3)	-50(2)	-7(2)	-54(2)
C7	56.7(19)	45.8(17)	56.2(18)	2.4(14)	-6.1(15)	-20.0(14)
C2	68(2)	54.6(19)	59.4(19)	-14.0(16)	8.0(17)	-20.6(15)
C3	62(2)	62(2)	56.9(19)	-19.2(16)	4.9(16)	-24.8(15)
N18	77(2)	50.5(17)	157(3)	-7.1(15)	10(2)	-44.0(19)
C8	53.9(19)	53.3(19)	74(2)	-0.7(15)	-3.3(16)	-26.6(16)
C5	61(2)	57(2)	60(2)	2.8(16)	-7.2(16)	-15.9(15)
N17	68(2)	74(2)	170(4)	-22.1(18)	17(2)	-55(2)
C9	59(2)	47.0(18)	92(3)	-0.9(16)	-6.4(18)	-24.4(17)
C4	63(2)	68(2)	81(2)	-6.0(18)	-10.7(18)	-16.3(18)
N4	150(4)	65(2)	112(3)	-43(2)	-21(3)	-8(2)
N5	300(9)	147(5)	129(5)	-111(5)	-78(5)	33(4)

 Table 14: Table containing bond lengths of 9.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
05	C6	1.347(3)	N10	C6	1.362(4)
05	N9	1.404(4)	N1	O2	1.220(4)
N15	C7	1.344(4)	N1	C1	1.438(4)
N15	C8	1.347(4)	N16	C8	1.365(4)
N15	N19	1.413(3)	N16	C9	1.383(4)
N6	N7	1.333(4)	N16	N17	1.398(4)
N6	C3	1.354(4)	N14	C8	1.302(4)
N6	C4	1.465(4)	N12	C7	1.309(4)
N11	06	1.233(3)	N2	03	1.223(4)
N11	07	1.245(3)	N2	C3	1.430(4)

N11	N10	1.307(3)	N9	C5	1.298(4)
N7	C1	1.325(4)	N3	N4	1.118(5)
N13	C7	1.336(4)	N3	C2	1.433(4)
N13	N14	1.410(4)	C1	C2	1.401(4)
N8	C6	1.313(4)	C2	C3	1.373(5)
N8	C5	1.370(4)	N18	C9	1.322(4)
01	N1	1.212(4)	C5	C4	1.482(5)
N19	C9	1.314(4)	N4	N5	1.173(6)
04	N2	1.214(4)			

Table 15: Table containing bond angles of compound 9.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	05	N9	106.9(2)	N7	C1	C2	113.2(3)
C7	N15	C8	107.8(2)	N7	C1	N1	118.8(3)
C7	N15	N19	138.4(3)	C2	C1	N1	127.8(3)
C8	N15	N19	113.7(2)	N8	C6	O5	112.4(3)
N7	N6	C3	111.2(3)	N8	C6	N10	136.1(3)
N7	N6	C4	119.8(3)	05	C6	N10	111.6(3)
C3	N6	C4	129.0(3)	N12	C7	N13	129.4(3)
06	N11	O7	119.2(3)	N12	C7	N15	126.3(3)
06	N11	N10	124.0(3)	N13	C7	N15	104.3(3)
07	N11	N10	116.8(2)	C3	C2	C1	102.2(3)
C1	N7	N6	104.7(2)	C3	C2	N3	123.9(3)
C7	N13	N14	113.3(2)	C1	C2	N3	133.9(3)
C6	N8	C5	102.1(2)	N6	C3	C2	108.7(3)
C9	N19	N15	100.9(2)	N6	C3	N2	123.9(3)
N11	N10	C6	116.4(2)	C2	C3	N2	127.5(3)
01	N1	O2	124.6(3)	N14	C8	N15	114.2(3)
01	N1	C1	119.2(3)	N14	C8	N16	141.2(3)
O2	N1	C1	116.1(3)	N15	C8	N16	104.6(3)
C8	N16	C9	106.8(3)	N9	C5	N8	115.7(3)
C8	N16	N17	129.5(3)	N9	C5	C4	120.7(3)
C9	N16	N17	123.7(3)	N8	C5	C4	123.5(3)
C8	N14	N13	100.4(2)	N19	C9	N18	126.3(3)
O4	N2	O3	125.0(3)	N19	C9	N16	113.9(3)
O4	N2	C3	118.2(3)	N18	C9	N16	119.8(3)
03	N2	C3	116.8(4)	N6	C4	C5	112.0(3)
C5	N9	O5	103.0(2)	N3	N4	N5	168.5(5)
N4	N3	C2	115.0(3)				

Isodesmic reactions:

Compound 4:

Compound 6:

Compound 7-17:

NMR Spectra:

Fig.S1: ¹H NMR Spectra of compound 2

Fig.S2: ¹³C{¹H}NMR Spectra of compound 2

Fig.S3: ¹H NMR Spectra of compound **3**

Fig.S4: ¹³C{¹H}NMR Spectra of compound **3**

Fig.S8: ¹H NMR Spectra of compound 5

Fig.S10: ¹H NMR Spectra of compound **6**

Fig.S11: ¹³C{¹H}NMR Spectra of compound **6**

Fig.S12: ¹⁵N NMR Spectra of compound **6**

Fig.S13: ¹H NMR Spectra of compound 7

Fig.S16: ¹³C{¹H}NMR Spectra of compound 8

Fig.S17: ¹H NMR Spectra of compound 9

Fig.S18: ¹³C{¹H}NMR Spectra of compound 9

Fig.S21: ¹H NMR Spectra of compound **11**

Fig.S22: ¹³C{¹H}NMR Spectra of compound **11**

Fig.S24: ¹³C{¹H}NMR Spectra of compound **12**

Fig.S25: ¹H NMR Spectra of compound **13**

Fig.S26: $^{13}C{^{1}H}NMR$ Spectra of compound 13

Fig.S27: ¹H NMR Spectra of compound 14

Fig.S28: ¹³C{¹H}NMR Spectra of compound 14

Fig.S29: ¹H NMR Spectra of compound 15

Fig.S30: ${}^{13}C{}^{1}H$ NMR Spectra of compound 15

Fig.S31: ¹H NMR Spectra of compound 16

Fig.S32: ¹³C{¹H}NMR Spectra of compound **16**

Fig.S33: ¹H NMR Spectra of compound **17**

Fig.S34: ¹³C{¹H}NMR Spectra of compound **17**

Fig.S35: ¹⁵N NMR Spectra of compound **17**

IR Spectra:

Fig.S40: FTIR Spectra of compound 6

Fig.S42: FTIR Spectra of compound 8

Fig.S44: FTIR Spectra of compound 10

Fig.S46: FTIR Spectra of compound 12

Fig.S48: FTIR Spectra of compound 14

Mass Spectra:

Fig.S52: Mass spectrum of compound 6

Thermal Analysis

Fig.S54: DSC curve of compound 5

Fig.S58: DSC curve of compound 9

Fig.S60: DSC curve of compound 12

Fig.S63: DSC curve of compound 15

Fig.S65: DSC curve of compound 17