Supporting Information for:

Coordination-driven Self-assembled Mn(II)-Metallostar

Endowed with High Relaxivity and Synergistic Photothermal

and Photodynamic Effects

Huiyu Wu,^{1,2,§} Zhenghui Li,^{1,4,§} Yao, Liu,^{1,3} Xingchi Shi,⁵ Yuan Xue,^{1,3} Zuhua Zeng,^{1,2} Fanglin, Mi,⁴ Haiying Wang^{1,*} and Jiang Zhu^{1,*}

¹ Medical Imaging Key Laboratory of Sichuan province, Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan, 637000, China.

² School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan, 637000, China

³ School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan, 637000, China

⁴ Department of Stomatology, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan, 637000, China ⁵ Department of Cardiovascular disease, School of Clinical Medicine, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan, 637000, China.

§ These authors contribute equally

* Corresponding Author(s): Haiying Wang, hywang@nsmc.edu.cn; Jiang Zhu, zhujiang@nsmc.edu.cn

Table of Contents

- **1.** Figure S1. Photograph of aqueous solutions of MnL, TiL_3Mn_3 and FeL_3Mn_3 (pH = 7.4).
- 2. Figure S2. Photograph of FeL_3Mn_3 at pH = 7.4 and 9.0 (in Tris buffer, 0.1 M)
- 3. Figure S3. The stability of FeL₃Mn₃ in the presence of 10 % FBS (at 37 °C) and the PBS solution (pH = 7.4, 10 mM) of FeL₃Mn₃ was employed as the negative control.
- 4. Photothermal conversion efficiency measurement of FeL₃Mn₃.
- 5. Figure S4. ¹O₂ quantum yield measurement of FeL₃Mn₃.
- Figure S5. Hyperthermia heating curves of BxPC-3 cells media with FeL₃Mn₃ at various concentrations (0, 0.125, 0.25, 0.5 mM) under 808 nm laser (2 W cm⁻²) irradiation for 6 min.
- 7. Figure S6. The change of absorption spectra of DPBF (20 μM) mixed with FeL₃Mn₃ (120 μM) over time without (a) / with (b) ascorbate sodium (1.0 mM) under 808 nm laser irritation (2.0 W cm⁻²)

1. Photograph of aqueous solutions of three chelates.

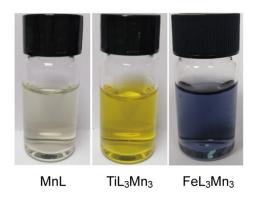


Figure S1 Photograph of aqueous solutions of MnL, TiL_3Mn_3 and FeL_3Mn_3 (pH = 7.4).

2. Photograph of FeL₃Mn₃ at different pH condition.

рН 9.0 рН 7.4

Figure S2 Photograph of FeL $_3Mn_3$ at pH = 7.4 and 9.0 (in Tris buffer, 0.1 M).

3. Stability of FeL₃Mn₃ in different mediums

4. Photothermal conversion efficiency measurement of FeL₃Mn₃.

To calculated the photothermal conversion efficiency (η) of FeL₃Mn₃, the FeL₃Mn₃ solution (0.25 mM, 0.3 ml, in HEPES buffer, pH = 7.4, 0.1 M) was irradiated by 808 nm laser (2.0 W cm⁻²) for 10 min, and then the laser was shut off. The solution was naturally cooled to room temperature. The η was calculated according to a previously described method:

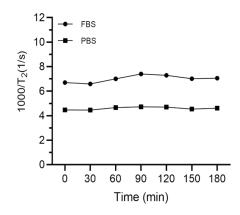


Figure S3 The stability of FeL₃Mn₃ (0.2 mM) in the presence of 10 % FBS (at 37 $^{\circ}$ C) and the PBS solution (pH = 7.4, 10 mM) of FeL₃Mn₃ was employed as the negative control.

$$\eta = \frac{hs(T_{Max} - T_{Surr}) - Q_{Dis}}{I(1 - 10^{-A808})}$$
(A1)

$$hs = \frac{mC}{\tau_s}$$
(A2)

$$t = -\tau_s ln(\theta) \tag{A3}$$

$$\boldsymbol{\theta} = \frac{T - T_{Surr}}{T_{Max} - T_{Surr}} \tag{A4}$$

h represents the heat transfer coefficient,

s represents the surface area of the container,

 h_s can be determined from the equation (A2),

 T_{Max} represents the maximum steady state temperature,

 T_{surr} represents the ambient room temperature,

Q_{Dis} represents heat dissipated from the laser mediated by the solvent and container,

I represent the laser power and A is the absorbance at 808 nm.

m represents the mass of the solution (g) containing the photoactive material,

C approximate to the specific heat capacity of water,

 τ_{s} represents the associated time constant, which can be determined from the equation (A3),

t represents the time required to cool to room temperature,

θ represents the driving force temperature, which be calculated from the equation (A4),

T represents instantaneous temperature during cooling.

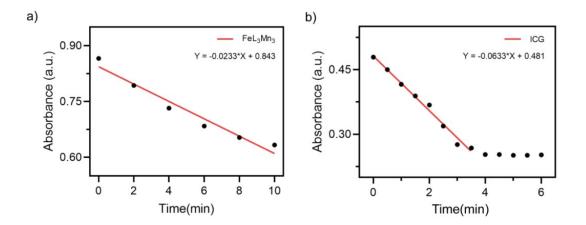


Figure S4 ${}^{1}O_{2}$ quantum yield measurement of FeL₃Mn₃. a) Decrease in absorbance intensity of DPBF recorded at 410 nm in the presence of FeL₃Mn₃ as a function of irradiation time. b) Decrease in absorbance intensity of DPBF recorded at 410 nm in the presence of indocyanine green (ICG) as a function of irradiation time.

5. $^{1}O_{2}$ quantum yield measurement of FeL₃Mn₃.

When indocyanine green was selected as the reference compound ($\Phi_{\Delta ICG} = 0.14$ in water), the ${}^{1}O_{2}$ yield of FeL₃Mn₃ was calculated by the following equation: $\Phi_{\Delta S} = \Phi_{\Delta ICG} \cdot (k_{S} \cdot F_{ICG}) / (k_{ICG} \cdot F_{S})$, where superscript S and ICG represent the FeL₃Mn₃ and ICG respectively. k is the DPBF photobleaching rates (410nm). F is the absorption correction factor, which can be calculated from F = 1-10^{-OD} (OD is the absorbance of samples at 808 nm).

6. Photothermal effect of FeL₃Mn₃ on BxPC-3 cells.

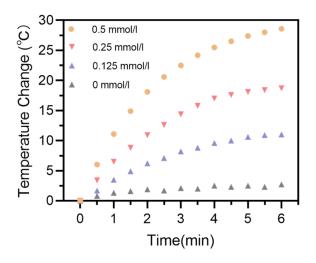


Figure S5 Hyperthermia heating curves of BxPC-3 cells media with FeL_3Mn_3 at various concentrations (0, 0.125, 0.25, 0.5 mM) under 808 nm laser (2 W cm⁻²) irradiation for 6 min.

7. Shielding of the photodynamic effect of FeL₃Mn₃.

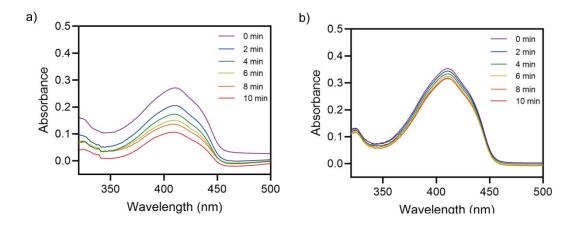


Figure S6 The change of absorption spectra of DPBF (20 μ M) mixed with FeL₃Mn₃ (120 μ M) over time without (a) / with (b) ascorbate sodium (1.0 mM) under 808 nm laser irritation (2.0 W cm⁻²)