Supporting Information

Iron (III) Oxide anchored conductive polymer-graphene ternary nanocomposite decorated disposable paper electrodes for nonenzymatic detection of serotonin

Sharmila Prashanth^a, Raifa Abdul Aziz^b, Shamprasad Varija Raghu^{b,c}, Yoon-Bo Shim^d, K. Sudhakara Prasad^{a*},

Airody Vasudeva Adhikari^{a,e}*

^a Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre and Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India

^b Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India

^c Division of Neuroscience, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India

^d Department of Chemistry and Institute of Biophysio Sensor Technology, Pusan National University, Busan 46241, Republic of Korea

^e Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India

SL No.	Contents	Page No.
1	Results and discussion	2
	XPS characterization of the sensor	
2	FTIR characterization of the sensor	3
3	Selectivity and stability studies	3
4	Raw DPV ad FTIR of 5-HT before and after electrochemical oxidation	4
4	Real sample analysis by HPLC-UV method	5
5	Recovery and comparison table	6
6	References	7

Table of contents

RESULTS AND DISCUSSIONS

XPS characterization of the sensor

Figure S1. Deconvoluted C 1s, O 1s, N 1s XPS spectrum for **(A)** PPE-P (py) (A, B, and C) and **(B)** PPE-P (py) - rGO (D, E, and F).

FTIR characterization of the sensor

Figure S2 FTIR spectrum obtained for PPE (black), PPE-P(py) (red), PPE-P(py)-rGO (blue), and PPE-P(py)-rGO-Fe₂O₃ (green).

Selectivity and stability studies

Figure S3 (**A**) Background subtracted DPV response for selectivity studies conducted for 5-HT at a concentration of 75 μ M, with 75 μ M concentrations of ascorbic acid (AA), uric acid (UA), dopamine (DA), and epinephrine (E) (**B**) Average current response for four electrodes recorded using DPV for 500 μ M 5-HT.

Figure S4 Raw DPV response for selectivity studies conducted for 5-HT at a concentration of 75 μ M, with 75 μ M concentrations of ascorbic acid (AA), uric acid (UA), dopamine (DA), and

epinephrine (E) without background subtraction

Figure S5 FTIR spectrum obtained for 5-HT before oxidation (blue) and after oxidation (black)

Real sample analysis by HPLC-UV method

Chromatographic conditions used to determine the concentration of 5-HT are as follows (1). Solution A: 0.1% formic acid in milli-Q water

Solution B: acetonitrile

Mobile phase: solution A: solution B (90:10%)

Column: shim-pack GIST 5C1g, 4.6*250 mm

Elution method: Isocratic

Detector wavelength: 280 nm

Flow rate: 1.0 mL/min

Column oven temperature: 25°C

Run time: 8 min

Injection volume: 60 Ul

The concentration of 5-HT in Drosophila melanogaster was determined by comparing the peak area obtained from the real sample analysis with the peak area obtained from the standard 5-HT solution of known concentrations (Figure S4)

Figure S6(A) Chromatogram of blank solution (**B**) Chromatogram of standard 5-HT solution (**C**) Chromatogram of real sample solution.

Sl. No	Actual conc. (μM)	Calculated conc. (µM)	% recovery
1.	25	25.0	100
2.	50	47.22	99.4
3.	75	81.38	104.4
4.	100	96.66	96.7

Table S1. Recovery analysis was carried out by standard addition method.

Table S2. Comparison of composition, detection limit and linear range of different modified electrodes for the determination of 5-HT.

Electrode type	Modification	Electrode modification	LOD (µM)	Linear range (µM)	Real sample	Ref
GCE	Ag/PPy/Cu ₂ O	Sonochemical and oxidative polymerisation	0.0124	0.01-250	-	(2)
SPE	MWCNT-AONP	Hydrothermal method	0.0246	0.016-0.16	Tomato	(3)
GCE	rGO-Co ₃ O ₄	Hydrothermal	1.128	1 - 10	-	(4)
GCE	MWCNT-NiO, MWCNT-ZnO MWCNT-Fe ₃ O ₄	Drop – dry	0.118 0.129 0.166	0.0059– 62.8	Urine	(5)
GCE	Fe ₃ O ₄ -MWCNT- poly(BCG)	Electropolymerisation followed by drop-dry method	0.080	0.5 - 100	Serum	(6)
Gold mylar substrate	rGO-PEDOT/PSS- nafion	Drop cast method	0.1	1 - 10	-	(7)
PPE	P(py)-rGO-Fe ₂ O ₃	Amperometry, CV	0.022	0.01-500	Brain sample of Drosophia melanogaster	This work

REFERENCES

1) He Q, Li M, Wang X, Xia Z, Du Y, Li Y, et al. A simple, efficient and rapid HPLC–UV method for the detection of 5-HT in RIN-14B cell extract and cell culture medium. BMC Chem. 2019 Jun 12;13(1):76.

2) Selvarajan S, Suganthi A, Rajarajan M. A novel highly selective and sensitive detection of serotonin-based on Ag/polypyrrole/Cu₂O nanocomposite modified glassy carbon electrode. Ultrason Sonochem. 2018 Jun 1;44:319–30.

3) Motsaathebe PC, Fayemi OE. Serotonin electrochemical detection in tomatoes at MWCNT-AONP nanocomposite modified electrode. Mater Res Express. 2021 Nov;8(11):115004.

4) Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al. A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin. Mater Sci Eng C. 2019 Jul 1;100:388–95.

5) Fayemi OE, Adekunle AS, Ebenso EE. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens Bio-Sens Res. 2017 Apr;13:17–27.

6) Ran G, Chen X, Xia Y. Electrochemical detection of serotonin based on a poly(bromocresol green) film and Fe₃O₄ nanoparticles in a chitosan matrix. RSC Adv. 2017;7(4):1847–51.

7) Al-Graiti W, Foroughi J, Liu Y, Chen J. Hybrid Graphene/Conducting Polymer Strip Sensors for Sensitive and Selective Electrochemical Detection of Serotonin. ACS Omega. 2019 Dec 24;4(26):22169–77.

* * * * * * * * *