Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material (SZI) for Material Advances

## **Supporting Information**

## Reassembly of wood to plastic- and paper-like films via ultra-mild dissolution in formic

acid

Naoko Kobayashi<sup>\*a,f</sup>, Tomohiro Hashizume<sup>b,f</sup>, Keiko Kondo<sup>c,d,f</sup> Kenji Kitayama<sup>b</sup>, Masato Katahira<sup>c,d,e,f</sup> and Takashi Watanabe<sup>\*a,f</sup>

Dr. N. Kobayashi\* (Kobayashi.naoko.2c@kyoto-u.ac.jp), Prof. T. Watanabe\* (twatanab@rish.kyoto-u.ac.jp): Corresponding authors

<sup>a</sup> Biomass Conversion, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, 611-0011, Japan.

<sup>b</sup> Daicel Corporation, Osaka Head Office, Grand Front Osaka Tower-B, 3-1, Ofuka-cho, Kita-ku, Osaka 530-0011, Japan.

<sup>c</sup> Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

<sup>d</sup> Integrated Research Centre for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

<sup>e</sup> Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto 606-8501, Japan.

<sup>f</sup> Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

**Table S1:** Comparison of density, maximal stress and strain, Young's, storage (E`), and elastic (E``) moduli, and loss tangent (tan $\delta$ ) of films from Eucalyptus, Japanese cedar sapwood and heartwood under dissolving temperatures of 30 °C to 50 °C. Table 1 with standard daviations. Five replicates were measured.

| Wood        | Temperature | Density | Stress | Strain | Young`s<br>modulus | E`   | Ε``    | tand |
|-------------|-------------|---------|--------|--------|--------------------|------|--------|------|
| powder      | (°C)        | (g/cm³) | (MPa)  | (%)    | (MPa)              | (    | Tg /℃) |      |
|             | 30.0        | 0.37    | 3.09   | 1.16   | 334.75             | 230  | 1/12   | nd   |
|             | 50.0        | ±0.004  | ±0.20  | ±0.11  | ±31.26             | 250  | 145    | n.u. |
| Eucohyptuc  | 40.0        | 0.56    | 31.15  | 2.73   | 1745.84            | 220  | 242    | nd   |
| Eucalyptus  | 40.0        | ±0.003  | ±4.75  | ±0.62  | ±105.48            | 239  | 243    | n.u. |
|             | 50.0        | 0.66    | 60.98  | 3.21   | 3096.73            | 110  | 175    | 177  |
|             | 50.0        | ±0.004  | ±1.92  | ±0.58  | ±346.81            | 110  | 175    | 1//  |
|             | 20.0        | 0.54    | 2.17   | 1.19   | 209.93             | 245  | 265    | n d  |
| lananaca    | 50.0        | ±0.002  | ±0.48  | ±0.06  | ±5.81              | 245  | 205    | n.u. |
| Japanese    | 40.0        | 0.52    | 10.61  | 1.94   | 685.74             | 251  | ام م   |      |
| (convood)   | 40.0        | ±0.003  | ±1.35  | ±0.15  | ±47.95             | 251  | n.d.   | n.a. |
| (Sapwood)   | 50.0        | 0.65    | 5.49   | 1.35   | 475.71             | 261  | 110    | nd   |
|             | 50.0        | ±0.004  | ±0.17  | ±0.07  | ±46.92             | 201  | 110    | n.u. |
|             | 20.0        | 0.23    | 0.59   | 1.10   | nd                 | nd   | nd     | nd   |
| lananoso    | 30.0        | ±0.02   | ±0.16  | ±0.10  | n.u.               | n.u. | n.u.   | n.u. |
| Japanese    | 40.0        | 0.50    | 6.10   | 1.68   | 453.45             | 260  | 124    | nd   |
| (hoortwood) | 40.0        | ±0.008  | ±0.66  | ±0.13  | ±48.53             | 207  | 124    | n.u. |
| (neartwood) | 50.0        | 0.64    | 7.15   | 1.41   | 614.81             | 276  |        |      |
|             | 50.0        | ±0.004  | ±1.62  | ±0.23  | ±141.63            | 270  | 114    | n.d. |

**Table S2:** Comparison of density, maximal stress and strain, Young's, storage (E`), and elastic (E``) moduli, and loss tangent (tan $\delta$ ) of the films from Japanese beech, wheat bran, and sugarcane bagasse under dissolving temperatures at 50 °C. Table 2 with standard daviations. Five replicates were measured.

| Wood powder    | Density | Stress | Strain | Young`s<br>modulus | E,    | E        | tand |
|----------------|---------|--------|--------|--------------------|-------|----------|------|
|                | (g/cm³) | (MPa)  | (%)    | (MPa)              |       | (Tg /°C) |      |
| Jananasa baash | 0.90    | 44.0   | 2.6    | 2395.8             | 1.1.1 | 206      | 240  |
| Japanese beech | ±0.005  | ±11.91 | ±0.22  | ±222.51            | 141   | 200      | 240  |
| M/haat hyan    | 0.44    | 28.3   | 3.34   | 1276.8             | 100   | 120      | 171  |
| wheat bran     | ±0.002  | ±2.04  | ±0.25  | ±59.88             | 109   | 130      | 1/1  |
| Sugarcane      | 0.82    | 60.4   | 3.27   | 3592.6             | 177   | 165      | 177  |
| bagasse        | ±0.001  | ±3.21  | ±0.20  | ±102.20            | 123   | 122      | 1//  |



\*The film was not peeled off from the cellophane

b

Background double lines: 0.6 mm (black line), 0.5 mm (interval), 0.6 mm (black line)



**Figure S1:** Biomass films and their transmittance spectra prepared from the sawdust of Eucalyptus and Japanese cedar at different dissolving temperatures. a) Biomass films prepared by dissolution of sawdust from Eucalyptus and sapwood and heartwood of Japanese cedar with three different particle sizes (1.05–355, 355–500, and 500–1000  $\mu$ m) at 30 °C–90 °C. The

films were categorized into (1) lump-containing sheet from limited solubilization at 30  $^{\circ}$ C (yellow box); (2) transparent or opaque films prepared at 40  $^{\circ}$ C-60  $^{\circ}$ C (red box); and (3) black and fragile films prepared at 70  $^{\circ}$ C-90  $^{\circ}$ C (green box). **b**, Transmittance spectra between 220 and 800 nm of the films. Transmittance is summarized in Table S3.



**Figure S2:** Correlation between transmittance and whiteness of the biomass films from Eucalyptus and Japanese cedar prepared by dissolution at different temperatures. The films were prepared from different sizes of sawdust,  $1.05-355 \mu m$  (a, d),  $355-500 \mu m$  (b, e), and  $500-1000 \mu m$  (c, f), from Eucalyptus (yellow), Japanese cedar sapwood (pale green) and heartwood (blue) at dissolving temperatures of  $30 \degree C-90 \degree C$ . (a, b, c) All transmittance degrees were measured at 800 nm (Table S3). (d, e, f) Whiteness levels of the films. Whiteness is summarized in Table S4. Five points on the film were measured and calculated for the averages.

**Table S3:** Transmittance of the films formed from Eucalyptus and sapwood and heartwood of Japanese cedar by dissolution at 30  $^{\circ}C$ –90  $^{\circ}C$ . Five points on the film were measured and calculated for the averages.

| Temperature | Eucalyptus |              |        | Japanes | Japanese cedar sap (T%) |        |        | Japanese cedar heart |        |  |
|-------------|------------|--------------|--------|---------|-------------------------|--------|--------|----------------------|--------|--|
| (°C)        |            | <b>(</b> T%) |        |         |                         |        |        | (T%)                 |        |  |
|             |            | size (mm)    |        |         | size (mm)               |        |        | size (mm)            |        |  |
|             | 1.05-      | 355-         | 500-   | 1.05-   | 355-                    | 500-   | 1.05-  | 355-                 | 500-   |  |
|             | 355        | 500          | 1000   | 355     | 500                     | 1000   | 355    | 500                  | 1000   |  |
| 30          | 2.82       | 0.36         | 0.46   | 3.54    | 0.19                    | 0.39   | 0.87   | *                    | *      |  |
|             | ± 1.07     | ± 0.02       | ± 0.03 | ± 0.66  | ± 0.01                  | ± 0.05 | ± 0.30 |                      |        |  |
| 40          | 0.15       | 0.15         | 0.24   | 0.21    | 0.13                    | 0.14   | 0.14   | 0.13                 | 0.20   |  |
|             | ± 0.00     | ± 0.00       | ± 0.02 | ± 0.01  | ± 0.00                  | ± 0.00 | ± 0.01 | ± 0.01               | ± 0.02 |  |
| 50          | 8.14       | 7.53         | 9.05   | 0.38    | 0.45                    | 0.57   | 0.34   | 0.22                 | 0.26   |  |
|             | ± 0.00     | ± 0.00       | ± 0.02 | ± 0.11  | ± 0.04                  | ± 0.19 | ± 0.01 | ± 0.00               | ± 0.02 |  |
| 60          | 9.90       | 8.25 ±       | 9.47   | 0.26    | 0.18                    | 0.29   | 0.23   | 0.21                 | 0.20   |  |
|             | ± 0.08     | 0.11         | ± 0.78 | ± 0.00  | ± 0.03                  | ± 0.01 | ± 0.00 | ± 0.02               | ± 0.01 |  |
| 70          | 6.48       | 6.67         | 8.16   | 1.40    | 2.13                    | 0.30   | *      | *                    | *      |  |
|             | ± 0.26     | ± 0.19       | ± 0.27 | ± 0.05  | ± 0.11                  | ± 0.03 |        |                      |        |  |
| 80          | 6.94       | 6.23         | 6.96   | 4.66    | 2.92                    | 0.82   | *      | *                    | *      |  |
|             | ± 0.20     | ± 0.53       | ± 0.19 | ± 0.04  | ± 0.10                  | ± 0.10 |        |                      |        |  |
| 90          | 3.42       | 4.51         | 3.85   | *       | *                       | *      | *      | *                    | *      |  |
|             | ± 0.31     | ± 0.45       | ± 0.08 |         |                         |        |        |                      |        |  |

\*Not detected

| Table S4. Whiteness of the films formed from Eucalyptus and sapwood and heartwood of                                        |
|-----------------------------------------------------------------------------------------------------------------------------|
| Japanese cedar by dissolving at 30 $^\circ\!\mathrm{C}$ –90 $^\circ\!\mathrm{C}.$ Five points on the film were measured and |
| calculated for the averages.                                                                                                |

| Temperature |        | Eucalyptus   |         |        | Japanese cedar sap (T%) |         |         | Japanese cedar heart |         |  |
|-------------|--------|--------------|---------|--------|-------------------------|---------|---------|----------------------|---------|--|
| (°C)        |        | <b>(</b> T%) |         |        |                         |         |         | (T%)                 |         |  |
|             |        | size (mm)    |         |        | size (mm)               |         |         | size (mm)            |         |  |
|             | 1.05-  | 355-         | 500-    | 1.05-  | 355-                    | 500-    | 1.05-   | 355-                 | 500-    |  |
|             | 355    | 500          | 1000    | 355    | 500                     | 1000    | 355     | 500                  | 1000    |  |
| 30          | 32.84  | 40.62 ±      | 40.32 ± | 31.44  | 42.66 ±                 | 38.36 ± | *       | 19.42 ±              | 29.74 ± |  |
|             | ± 0.95 | 0.94         | 0.45    | ± 1.17 | 0.88                    | 0.56    |         | 0.34                 | 0.42    |  |
| 40          | 29.82  | 33.88 ±      | 32.86 ± | 32.28  | 37.82 ±                 | 34.02 ± | 28.60 ± | 27.40 ±              | 26.44 ± |  |
|             | ± 0.50 | 1.08         | 1.21    | ± 0.38 | 0.20                    | 0.31    | 0.26    | 0.37                 | 0.36    |  |
| 50          | 10.02  | 9.58         | 10.12 ± | 29.72  | 25.76 ±                 | 31.18 ± | 23.46 ± | 27.22 ±              | 25.94 ± |  |
|             | ± 0.32 | ± 0.13       | 0.11    | ± 0.43 | 0.75                    | 0.75    | 0.13    | 0.38                 | 0.26    |  |
| 60          | 9.00   | 9.22         | 8.90    | 23.72  | 28.42 ±                 | 22.04 ± | 22.36 ± | 23.44 ±              | 23.20 ± |  |
|             | ± 0.07 | ± 0.15       | ± 0.16  | ± 0.11 | 1.29                    | 0.23    | 0.16    | 0.11                 | 0.10    |  |
| 70          | 5.94   | 6.26         | 6.66    | 12.28  | 12.36 ±                 | 20.46 ± | 13.96 ± | 8.80                 | 16.04 ± |  |
|             | ± 0.17 | ± 0.23       | ± 0.09  | ± 0.25 | 0.21                    | 0.32    | 0.26    | ± 0.12               | 0.22    |  |
| 80          | 5.86   | 5.90         | 6.50    | 5.70   | 7.14                    | 9.36    | 6.66    | 6.18                 | 6.08    |  |
|             | ± 0.09 | ± 0.19       | ± 0.23  | ± 0.00 | ± 0.05                  | ± 0.11  | ± 0.21  | ±0.11                | ± 0.04  |  |
| 90          | 5.78   | 5.02         | 5.32    | 8.34   | 10.78 ±                 | 6.40    | 5.72    | 6.94                 | 7.96    |  |
|             | ±0.16  | ± 0.13       | ± 0.08  | ± 0.15 | 0.08                    | ± 0.07  | ± 0.11  | ± 0.15               | ± 0.05  |  |

\*Not detected

**Table S5.** Comparison of transmittance and whiteness of the films formed for different species, tissues, and sources by dissolving at 30  $^{\circ}$ C–90  $^{\circ}$ C. Five points on the film were cmeasured and alculated for the averages.

| Materials                  | Transmittance (T%) | Whiteness (%) |
|----------------------------|--------------------|---------------|
| Japanese cedar (sapwood)   | $0.21 \pm 0.01$    | 36.84 ± 1.62  |
| Japanese cedar (heartwood) | $0.29 \pm 0.06$    | 27.00 ± 0.56  |
| Rice fir                   | $0.34 \pm 0.01$    | 40.14 ± 0.85  |
| Japanese beech             | 6.70 ± 0.85        | 7.54 ± 0.39   |
| Japanese cypress           | 5.88 ± 0.25        | 7.90 ± 0.35   |
| Japanese red pine          | 8.02 ± 0.66        | 8.56 ± 0.18   |
| Sugarcane baggase          | 5.98 ± 0.12        | 9.40 ± 0.12   |
| Bomboo                     | $6.11 \pm 0.60$    | 9.30 ± 0.37   |
| Wheat bran                 | 16.09 ± 0.88       | 8.96 ± 0.06   |



**Figure S3:** Comparison of soulubilization in different solvent and fractionation of biomass films by phase separation. Solubilazation of Eucaluptus (a) and Japanese cedar (b) biomass film in different solvent. Biomass film was stirred in each solvent for overnight at 40  $^{\circ}$ C. (c) Biomass films were prepared by dissolution of Eucalyptus and Japanese cedar heartwood at 50  $^{\circ}$ C. The films were redissolved in formic acid and separated by phase-partition with 2MeTHF and water. Each fraction was analyzed by NMR spectroscopy. (d) Recoveries of the three fractions from Eucalyptus and Japanese cedar films.



**Figure S4:** Aliphatic sidechain region of 2D <sup>1</sup>H-<sup>13</sup>C HSQC spectra from the Japanese cedar heartwood film formed at 50 °C. (a) <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of the polysaccharide-rich aqueous fraction. The signals from cellulose, arabinoglucuronoxylan, galactoglucomannan, and formylated compounds are shown in red, green, yellow/red, and pink, respectively. (b) <sup>1</sup>H-<sup>13</sup>C

HSQC spectrum of the lignin-rich 2MeTHF fraction. The lignin linkages of  $\beta$ -O-4,  $\beta$ - $\beta$ ,  $\beta$ -5, and LCC are shown in blue, brown, purple, and yellow, respectively. The signal from A $\alpha$  in the  $\beta$ -O-4 lignin unit differed from that of the benzyl ether linkage in LCC. Signals from galactoglucomannan are shown in yellow as M1 to M6/M6<sup>\chi</sup>. The signal assignment is shown in Tables S6, S7.

| а                   |       |       |       |       |                |       |       |      |  |
|---------------------|-------|-------|-------|-------|----------------|-------|-------|------|--|
| l ch de             |       | Eucal | yptus |       | Japanese cedar |       |       |      |  |
| Labers              | 30 °C | 40 °C | 50 °C | 60 °C | 30 °C          | 40 °C | 50 °C | 60 ℃ |  |
| C1-NR               |       |       |       |       |                |       |       |      |  |
| C1-I                |       |       |       |       |                |       |       |      |  |
| C1-R6*              |       |       |       |       |                |       |       |      |  |
| C1-Ra*1             |       |       |       |       |                |       |       |      |  |
| C2-NR               |       |       |       |       |                |       |       |      |  |
| C2-I                |       |       |       |       |                |       |       |      |  |
| C2-R6*              |       |       |       |       |                |       |       |      |  |
| C2-Rat*2            |       |       |       |       |                |       |       |      |  |
| C3-NR* <sup>3</sup> |       |       |       |       |                |       |       |      |  |
| C 3-I               |       |       |       |       |                |       |       |      |  |
| C3-RB               |       |       |       |       |                |       |       |      |  |
| C 3-Ra.             |       |       |       |       |                |       |       |      |  |
| C4-NR               |       |       |       |       |                |       |       |      |  |
| C4-I                |       |       |       |       |                |       |       |      |  |
| C4-RB               |       |       |       |       |                |       |       |      |  |
| C4-Ra               |       |       |       |       |                |       |       |      |  |
| C5-NR* <sup>3</sup> |       |       |       |       |                |       |       |      |  |
| C.5-I* <sup>3</sup> |       |       |       |       |                |       |       |      |  |
| C.5-RB*4            |       |       |       |       |                |       |       |      |  |
| C5-Ra               |       |       |       |       |                |       |       |      |  |
| C6-NR               |       |       |       |       |                |       |       |      |  |
| C6-I                |       |       |       |       |                |       |       |      |  |
| C6-R02              |       |       |       |       |                |       |       |      |  |
| C6-RB               |       |       |       |       |                |       |       |      |  |
| 6 F C 6             |       |       |       |       |                |       |       |      |  |

| S | ignal inte | nsity |
|---|------------|-------|
|   |            |       |
|   |            |       |
|   |            |       |

b

| U U                 |       |       |       |       |       |        |         |       |
|---------------------|-------|-------|-------|-------|-------|--------|---------|-------|
| Labole+A2:136       |       | Euca  | yptus |       |       | Japane | se ceda | r     |
| Labers+Az.130       | 30 °C | 40 °C | 50 °C | 60 °C | 30 °C | 40 °C  | 50 ℃    | 60 °C |
| X1-NR               |       |       |       |       |       |        |         |       |
| X1-I                |       |       |       |       |       |        |         |       |
| X1-RB               |       |       |       |       |       |        |         |       |
| <u>X1-Rα*</u> 1     |       |       |       |       |       |        |         |       |
| X2-NR               |       |       |       |       |       |        |         |       |
| X2-I                |       |       |       |       |       | _      |         |       |
| X2-RB               |       |       |       |       |       |        |         |       |
| X2-Ra*2             |       |       |       |       |       |        |         |       |
| X3-NR               |       |       |       |       |       |        |         |       |
| X3-l* <sup>3</sup>  |       |       |       |       |       |        |         |       |
| X3-Rβ* <sup>4</sup> |       |       |       |       |       |        |         |       |
| X3-Ra               |       |       |       |       |       |        |         |       |
| X4-NR               |       |       |       |       |       |        |         |       |
| X4-I                |       |       |       |       |       |        |         |       |
| X4-RB               |       |       |       |       |       |        |         |       |
| X4-Ra               |       |       |       |       |       |        |         |       |
| X5-NR a             |       |       |       |       |       |        |         |       |
| X5-NR b             |       |       |       |       |       |        |         |       |
| X5-I a              |       |       |       |       |       |        |         |       |
| X5-I b              |       |       |       |       |       |        |         |       |
| X5-Roca             |       |       |       |       |       |        |         |       |
| X5-Rocb             |       |       |       |       |       |        |         |       |
| X5-Rβa              |       |       |       |       |       |        |         |       |
| X5-Rβb              |       |       |       |       |       |        |         |       |
| MGA1                |       |       |       |       |       |        |         |       |
| MGA2                |       |       |       |       |       |        |         |       |
| MGA3* <sup>5</sup>  |       |       |       |       |       |        |         |       |
| MGA4                |       |       |       |       |       |        |         |       |
| MGA5                |       |       |       |       |       |        |         |       |
| MGAOME              |       |       |       |       |       |        |         |       |
| 2-0-Ac-X1           |       |       |       |       |       |        |         |       |
| 2,3-0-Ac-X1         |       |       |       |       |       |        |         |       |
| 2-0-Ac-X2           |       |       |       |       |       |        |         |       |
| 3-0-Ac-X3           |       |       |       |       |       |        |         |       |
|                     |       |       |       |       |       |        |         |       |
| β-Ara1              |       |       |       |       |       |        |         |       |
| Ara2                |       |       |       |       |       |        |         |       |
| 3-F-X1              |       |       |       |       |       |        |         |       |
| 3-F-X3              |       |       |       |       |       |        |         |       |
|                     |       |       |       |       |       |        |         |       |





**Figure S5:** Comparison of signal intensity changes in cellulose, xylan, mannan, and lignin between Eucalyptus and Japanese cedar at 30 °C–60 °C dissolving temperatures. a) Relative signal intensities of cellulose and formylated glucose residues. C-NR, cellulose nonreducing end unit; C-I, cellulose internal unit; C-R $\alpha$ ,  $\alpha$  reducing end unit of cellulose; C-R $\beta$ ,  $\beta$  reducing

end unit of cellulose; 6-F-C, glucose residue formylated at 6 position in cellulose. (b) Relative signal intensities of xylan and formylated xylose residues. X-NR, xylan nonreducing end unit; X-I, xylan internal unit; X-R $\alpha$ ,  $\alpha$  reducing end unit of xylan; X-R $\beta$ ,  $\beta$  reducing end unit of xylan; MGA, 4-O-methyl- $\alpha$ -D-glucuronic acid residue; Ac-X, acetylated xylose residue in xylan; Ara, arabinose residue. (c) Relative signal intensities of glucomannan. M-NR, nonreducing end unit in glucomannan; M-I, internal unit of glucomannan; M-R $\alpha$ ,  $\alpha$  reducing end unit of glucomannan; M-R $\beta$ ,  $\beta$  reducing end unit of glucomannan; Ac-M, acetylated mannose residue in glucomannan; Gal-NR, galactose nonreducing end unit; Gal-I, galactose internal unit; Gal- $R\alpha$ , galactose  $\alpha$  reducing end unit; Gal- $R\beta$ , galactose  $\beta$  reducing end unit. (d) Relative signal intensities of lignin. S, syringyl unit; S`,  $\alpha$ -etherified syringyl unit; G, guaiacyl unit; G`,  $\alpha$ etherified guaiacyl unit; A $\alpha$ , A $\beta$ , A $\gamma$ ,  $\alpha$ ,  $\beta$  and  $\gamma$  positions in  $\beta$ -O-4 unit;  $\alpha$ ,  $\gamma$ -F-A,  $\beta$ -O-4 unit formylated at  $\alpha$  and/or  $\gamma$  positions; B $\alpha$ , B $\beta$ ,  $\alpha$  and  $\beta$  positions in  $\beta$ -5 unit; C $\alpha$ , C $\beta$ , C $\gamma$ ,  $\alpha$ ,  $\beta$ and  $\gamma$  positions in  $\beta$ - $\beta$  linkage. The chemical structures and positions are shown in Figure 7, and Scheme 1 and Figure S4. The signal assignment is tabulated in Tables S6, S7. The relative signal intensities were categorized into four groups: pale yellow, not detected; green, weak; orange, middle; pink, strong.

|                     | HSC         | QC          |                                                                         |                                   |
|---------------------|-------------|-------------|-------------------------------------------------------------------------|-----------------------------------|
| Labels              | δH<br>(ppm) | δC<br>(ppm) | Asingments                                                              | Compositions                      |
| C1-NR               | 4.20        | 103.27      | $C_1$ -H <sub>1</sub> of $\beta$ -D-glucopyranoside at non-reducing end |                                   |
| C1-I                | 4.30        | 103.03      | $C_1$ -H <sub>1</sub> of $\beta$ -D-glucopyranoside in internal         |                                   |
| C1-Rβ*              | 4.49        | 97.10       | $C_1$ -H <sub>1</sub> of $\beta$ -D-glucopyranoside at reducing end     |                                   |
| C1-Rα* <sup>1</sup> | 4.91        | 92.36       | $C_1$ -H <sub>1</sub> of $\alpha$ -D-glucopyranoside at reducing end    |                                   |
| C2-NR               | 2.91        | 72.89       | $C_2$ -H <sub>2</sub> of $\beta$ -D-glucopyranoside at non-reducing end |                                   |
| C2-I                | 2.98        | 72.80       | $C_2$ -H <sub>2</sub> of $\beta$ -D-glucopyranoside in internal         | Collulaça                         |
| <b>C2-R</b> β*      | 2.97        | 74.64       | $C_2$ -H <sub>2</sub> of $\beta$ -D-glucopyranoside at reducing end     | Glucomannan<br>Galactoglucomannan |
| C2-Rα*2             | 3.20        | 72.16       | $C_2$ -H <sub>2</sub> of $\alpha$ -D-glucopyranoside at reducing end    |                                   |
| C3-NR* <sup>3</sup> | 3.38        | 76.85       | $C_3$ -H <sub>3</sub> of $\beta$ -D-glucopyranoside at non-reducing end |                                   |
| C3-I                | 3 47        | 73 32       | $C_3$ -H <sub>3</sub> of $\beta$ -D-glucopyranoside in internal         |                                   |
| <b>C3-R</b> β       | 5.47        | 13.32       | $C_3$ -H <sub>3</sub> of $\beta$ -D-glucopyranoside at reducing end     |                                   |
| C3-Rα               | 3.65        | 71.54       | $C_3$ -H <sub>3</sub> of $\alpha$ -D-glucopyranoside at reducing end    |                                   |
| C4-NR               | 3.32        | 69.84       | C₄-H₄ of β-D-glucopyranoside at<br>non-reducing end                     |                                   |

Table S6: Assignment of 2D <sup>1</sup>H-<sup>13</sup>C HSQC NMR data for polysaccharides of Eucalyptus and Japanese cedar films. The names of lables are corresponding to those in Fugure S5.

| C4-I                |      |        | C₄-H₄ of β-D-glucopyranoside in internal                                                    |                                     |  |  |
|---------------------|------|--------|---------------------------------------------------------------------------------------------|-------------------------------------|--|--|
| C4-Rβ               | 3.41 | 79.14  | C <sub>4</sub> -H <sub>4</sub> of $\beta$ -D-glucopyranoside at reducing end                |                                     |  |  |
| C4-Rα               |      |        | C <sub>4</sub> -H <sub>4</sub> of $\alpha$ -D-glucopyranoside at reducing end               |                                     |  |  |
| C5-NR* <sup>3</sup> | 3 38 | 76 85  | C <sub>5</sub> -H <sub>5</sub> of $\beta$ -D-glucopyranoside at non-reducing end            |                                     |  |  |
| C5-I* <sup>3</sup>  | 0.00 | 10.00  | $C_5$ -H $_5$ of $\beta$ -D-glucopyranoside in internal                                     |                                     |  |  |
| C5-Rβ*4             | 3.28 | 74.28  | $C_5$ -H $_5$ of $\beta$ -D-glucopyranoside at reducing end                                 |                                     |  |  |
| <b>C5-</b> Rα       | 3.84 | 69.78  | C <sub>5</sub> -H <sub>5</sub> of $\alpha$ -D-glucopyranoside at reducing end               |                                     |  |  |
| C6-NR               | 3.38 | 61.10  | $C_6$ -H <sub>6</sub> of $\beta$ -D-glucopyranoside at non-reducing end                     |                                     |  |  |
| C6-I                | 3.51 | 60.64  | $C_6$ -H <sub>6</sub> of $\beta$ -D-glucopyranoside in internal                             |                                     |  |  |
| C6-Ra               | 3 60 | 60 20  | $C_6$ -H <sub>6</sub> of $\alpha$ -D-glucopyranoside at reducing end                        |                                     |  |  |
| <b>C6-R</b> β       | 5.05 | 00.23  | $C_6$ -H <sub>6</sub> of $\beta$ -D-glucopyranoside at reducing end                         |                                     |  |  |
| 6-F-C6              | 4.04 | 62.48  | C <sub>6</sub> -H <sub>6</sub> of formylated β-D-<br>glucopyranoside at non-reducing<br>end | Formylated cellulose                |  |  |
| X1-NR               | 4 29 | 101 02 | $C_1$ -H <sub>1</sub> of $\beta$ -D-xylopyranoside at non-reducing end                      |                                     |  |  |
| X1-I                | 4.20 | 101.05 | $C_1$ -H <sub>1</sub> of $\beta$ -D-xylopyranoside in internal                              | Glucurono xylan<br>Arabinoglucurono |  |  |
| Χ1-Rβ               | 4.29 | 97.44  | $C_1$ - $H_1$ of $\beta$ -D-xylopyranoside at reducing end                                  | Xylan                               |  |  |
| X1-Rα* <sup>1</sup> | 4.92 | 92.36  | $C_1$ - $H_1$ of $\alpha$ -D-xylopyranoside at reducing end                                 |                                     |  |  |

| X2-NR               | 2 11 | 70 57 | $C_2$ - $H_2$ of $\beta$ -D-xylopyranoside at non-<br>reducing end             |
|---------------------|------|-------|--------------------------------------------------------------------------------|
| X2-I                | 3.11 | 12.31 | $C_2$ -H <sub>2</sub> of $\beta$ -D-xylopyranoside in internal                 |
| <b>Χ2-</b> Rβ       | 2.97 | 74.64 | $C_2$ -H <sub>2</sub> of $\beta$ -D-xylopyranoside at reducing end             |
| X2-Rα*²             | 3.20 | 72.16 | C <sub>2</sub> -H <sub>2</sub> of $\alpha$ -D-xylopyranoside at reducing end   |
| X3-NR               | 3.15 | 76.65 | $C_3$ -H <sub>3</sub> of $\beta$ -D-xylopyranoside at non-reducing end         |
| X3-I* <sup>3</sup>  | 3 28 | 74 28 | $C_3$ -H <sub>3</sub> of $\beta$ -D-xylopyranoside in internal                 |
| X3-Rβ* <sup>4</sup> | 3.20 | 74.20 | $C_3$ -H <sub>3</sub> of $\beta$ -D-xylopyranoside at reducing end             |
| X3-Rα               | 3.51 | 71.59 | C <sub>3</sub> -H <sub>3</sub> of $\alpha$ -D-xylopyranoside at reducing end   |
| X4-NR               | 3.49 | 69.57 | $C_4$ -H <sub>4</sub> of $\beta$ -D-xylopyranoside at non-reducing end         |
| X4-I                |      |       | C₄-H₄ of β-D-xylopyranoside in<br>internal                                     |
| Χ4-Rβ               | 3.55 | 75.35 | C₄-H₄ of β-D-xylopyranoside at reducing end                                    |
| X4-Rα               |      |       | $C_4$ -H <sub>4</sub> of $\alpha$ -D-xylopyranoside at reducing end            |
| X5-NR a             | 3.10 | 65.61 | $C_5$ -H $_5$ of $\beta$ -D-xylopyranoside at non-reducing end a               |
| X5-NR b             | 3.74 | 65.73 | $C_5$ -H $_5$ of $\beta$ -D-xylopyranoside at non-reducing end b               |
| X5-I a              | 3.35 | 63.04 | $C_5$ -H $_5$ of $\beta$ -D-xylopyranoside in internal a                       |
| X5-I b              | 3.92 | 63.15 | $C_5$ -H $_5$ of $\beta$ -D-xylopyranoside in internal b                       |
| X5-Rα a             | 3.52 | 58.12 | C <sub>5</sub> -H <sub>5</sub> of $\alpha$ -D-xylopyranoside at reducing end a |

| X5-Rα b              | 3.66 | 58.48  | C₅-H₅ of α-D-xylopyranoside at reducing end b                                                                 |
|----------------------|------|--------|---------------------------------------------------------------------------------------------------------------|
| X5-Rβ a              | 3.20 | 63.11  | C <sub>5</sub> -H <sub>5</sub> of $\beta$ -D-xylopyranoside at reducing end a                                 |
| X5-Rβ b              | 3.42 | 62.91  | $C_5$ -H $_5$ of $\beta$ -D-xylopyranoside at reducing end b                                                  |
| MGA1                 | 5.16 | 97.37  | C <sub>1</sub> -H <sub>1</sub> of 4- <i>O</i> -methyl-α-D-gluconic<br>acid pyranoside at non-reducing<br>end  |
| MGA2                 | 3.73 | 73.06  | $C_2$ -H <sub>2</sub> of 4- <i>O</i> -methyl- $\alpha$ -D-gluconic acid pyranoside at non-reducing end        |
| MGA3* <sup>5</sup>   | 3.74 | 73.16  | $C_3$ - $H_3$ of 4-O-methyl- $\alpha$ -D-gluconic acid pyranoside at non-reducing end                         |
| MGA4                 | 3.15 | 81.59  | $C_4$ -H <sub>4</sub> of 4- <i>O</i> -methyl- $\alpha$ -D-gluconic acid pyranoside at non-reducing end        |
| MGA5                 | 4.49 | 70.16  | $C_5$ -H <sub>5</sub> of 4-O-methyl- $\alpha$ -D-gluconic acid pyranoside at non-reducing end                 |
| MGAOME               | 3.38 | 59.02  | C <sub>OMe</sub> -H <sub>OMe</sub> of 4-O-methyl-α-D-<br>gluconic acid pyranoside acid at<br>non-reducing end |
| 2- <i>0</i> -Ac-X1   | 4.52 | 99.31  | C₁-H₁ of 2- <i>O</i> -acetyl-β-D-<br>xylopyranoside                                                           |
| 2,3- <i>0</i> -Ac-X1 | 4.62 | 101.06 | C₁-H₁ of 2,3- <i>O</i> -acethyl-β-D-<br>xylopyranoside                                                        |
| 2- <i>0</i> -Ac-X2   | 4.56 | 73.28  | C₂-H₂ of 2- <i>O</i> -acethyl-β-D-<br>xylopyranoside                                                          |
| 3- <i>0</i> -Ac-X3   | 4.87 | 74.76  | C <sub>3</sub> -H <sub>3</sub> of 3- <i>O</i> -acethyl-β-D-<br>xylopyranoside                                 |
| R- <b>A</b> ra1      | 5.00 | 101.77 | $C_1$ -H <sub>1</sub> of $\beta$ -D-arabinofranoside                                                          |
|                      | 5.08 | 100.45 | $C_1$ -H <sub>1</sub> of $\beta$ -D-arabinofranoside                                                          |

| Ara2             | 3.85 | 82.80  | $C_2$ - $H_2$ of $\beta$ -D-arabinofranoside                                                |                           |
|------------------|------|--------|---------------------------------------------------------------------------------------------|---------------------------|
| Μ1-β             | 4.48 | 101.50 | $C_1$ -H <sub>1</sub> of $\beta$ -D-mannopyranoside at reducing end                         |                           |
| Μ1-α             | 4.97 | 93.73  | $C_1$ -H <sub>1</sub> of $\alpha$ -D-mannopyranoside at reducing end                        |                           |
| M2               | 3.85 | 71.17  | $C_2$ - $H_2$ of $\beta$ -D-mannopyranoside                                                 |                           |
| M3* <sup>5</sup> | 3.74 | 72.53  | C <sub>3</sub> -H <sub>3</sub> of $\beta$ -D-mannopyranoside                                |                           |
| M4-NR            | 3.67 | 67.79  | $C_4$ -H <sub>4</sub> of $\beta$ -D-mannopyranoside at non-reducing end                     |                           |
| M4-I             |      |        | C₄-H₄ of β-D-mannopyranoside in<br>internal                                                 |                           |
| <b>Μ4-</b> Rβ    | 3.76 | 76.55  | $C_4$ -H <sub>4</sub> of $\beta$ -D-mannopyranoside at reducing end                         | Glucomannan               |
| M4-Rα            |      |        | $C_4$ -H <sub>4</sub> of $\alpha$ -D-mannopyranoside at reducing end                        | Galactoglucomannan<br>LCC |
|                  | 3.38 | 76.85  |                                                                                             |                           |
| M5* <sup>4</sup> | 3.51 | 76.63  | $\textbf{C}_{5}\text{-}\textbf{H}_{5}$ of $\beta\text{-}\textbf{D}\text{-}mannopyranoside}$ |                           |
|                  | 3.70 | 76.55  |                                                                                             |                           |
| M5`              | 3.69 | 69.26  | LCC C5 -H5 of $\beta$ -D-xylopyranoside                                                     |                           |
| M6 a             |      |        | $C_6$ -H <sub>6</sub> of $\beta$ -D-mannopyranoside a                                       |                           |
| M6 b             | 3.84 | 62.66  | $C_6$ -H <sub>6</sub> of $\beta$ -D-mannopyranoside b                                       |                           |

**100.02** C<sub>1</sub>-H<sub>1</sub> of  $\beta$ -D-arabinofranoside

5.17

| M6`                | 3.49 | 67.83  | LCC C <sub>6</sub> ·H <sub>6</sub> of β-D-xylopyranoside                          |
|--------------------|------|--------|-----------------------------------------------------------------------------------|
| 3- <i>0</i> -Ac-M1 | 4.79 | 98.87  | C <sub>1</sub> -H <sub>1</sub> of 3- <i>O</i> -acetyl-β-D-<br>mannopyranoside     |
| 2- <i>0</i> -Ac-M2 | 4.98 | 72.66  | C <sub>2</sub> -H <sub>2</sub> of 2- <i>O</i> -acetyl-β-D-<br>mannopyranoside     |
| 3- <i>0</i> -Ac-M2 | 3.78 | 68.96  | $C_2$ - $H_2$ of 3-O-acetyl- $\beta$ -D-mannopyranoside                           |
| 3- <i>0</i> -Ac-M3 | 4.78 | 77.25  | C₃-H₃ of 3- <i>O</i> -acetyl-β-D-<br>mannopyranoside                              |
| 2- <i>0</i> -Ac-M4 | 3.70 | 76.55  | C₄-H₄ of 2- <i>O</i> -acetyl-β-D-<br>mannopyranoside                              |
| 3- <i>0</i> -Ac-M4 | 3.92 | 75.54  | C₄-H₄ of 3- <i>O</i> -acetyl-β-D-<br>mannopyranoside                              |
| Gal1-NR            | 4.91 | 92.36  | $C_1\text{-}H_1$ of $\beta\text{-}D\text{-}galactopyranoside at non-reducing end$ |
| Gal1-I             | 4.32 | 105.16 | $C_1\text{-}H_1$ of $\beta\text{-}D\text{-}galactopyranoside in internal$         |
| Gal1-Rβ            | 4.28 | 97.49  | $C_1\text{-}H_1$ of $\beta\text{-}D\text{-}galactopyranoside at reducing end$     |
| Gal1-Rα*¹          | 4.91 | 92.36  | $C_1$ -H <sub>1</sub> of $\alpha$ -D-galactopyranoside at reducing end            |
|                    |      |        |                                                                                   |

|                | HSQC           |        |                                                                                                                        | Wood                          |  |
|----------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Labels         | δHδC(ppm)(ppm) |        | Compositions                                                                                                           |                               |  |
| S 2/6          | 6.65           | 103.50 | C <sub>2</sub> -H <sub>2</sub> /C <sub>6</sub> -H <sub>6</sub> of syringyl units                                       |                               |  |
| S` 2/6         | 7.30           | 106.30 | C <sub>2</sub> -H <sub>2</sub> /C <sub>6</sub> -H <sub>6</sub> of syringyl units with $\alpha$ linkage                 |                               |  |
| G 2            | 6.98           | 110.84 | C <sub>2</sub> -H <sub>2</sub> of guaiacyl units                                                                       |                               |  |
| G` 2           | 7.47           | 111.66 | $C_2$ -H <sub>2</sub> /C <sub>6</sub> -H <sub>6</sub> of guaiacyl units with $\alpha$ linkage                          | Aromatic units                |  |
|                | 6.92           | 115.31 |                                                                                                                        |                               |  |
| G 5+G 6        | 6.78           | 118.90 | C₅-H₅+C₀-H₀ of guaiacyl units                                                                                          |                               |  |
| G` 6           | 7.34           | 124.06 | $\textbf{C}_{\textbf{6}}\textbf{-}\textbf{H}_{\textbf{6}}$ of guaiacyl units with $\alpha$ linkage                     |                               |  |
| Αα             | 4.86           | 71.51  | $C_a$ -H <sub>a</sub> of $\beta$ -O-4 linkages                                                                         | Linkages of ligin<br>and LCC  |  |
| α,γ-F-Αα       | 6.02           | 73.69  | $C_{\alpha}\text{-}H_{\alpha}$ of $\beta\text{-}\textit{O}\text{-}4$ formylated linkages                               | Formylated β-O-4<br>of lignin |  |
| Aβ( <i>t</i> ) | 4.01           | 86.62  | $C_{\beta}$ -H <sub><math>\beta</math></sub> of $\beta$ -O-4 linkages linked to a syringyl unit ( <i>threo</i> form)   |                               |  |
| Αβ( <i>e</i> ) | 4.10           | 85.93  | $C_{\beta}$ -H <sub><math>\beta</math></sub> of $\beta$ -O-4 linkages linked to a syringyl unit ( <i>erythro</i> form) | Linkages of ligin             |  |
| Αγ1            | 3.21           | 62.00  | $C_{\gamma 1}$ -H <sub><math>\gamma 1</math></sub> of $\beta$ -O-4 linkages                                            | and LCC                       |  |
| Αγ2            | 3.53           | 60.69  | $C_{\gamma 2}$ - $H_{\gamma 2}$ of $\beta$ - $O$ -4 linkages                                                           |                               |  |

Table S7: Assignment of 2D <sup>1</sup>H-<sup>13</sup>C HSQC NMR data for lignin and LCC of Eucalyptus and Japanese cedar films. The names of lables are corresponding to those in Fugure S5.

| α,γ-F-Αγ1 | 3.92  | 63.27 | $\textbf{C}_{\gamma 1} \textbf{-} \textbf{H}_{\gamma 1}$ of formylated $\beta \textbf{-} \textbf{O} \textbf{-} \textbf{4}$ linkages | Formylated β-O-4      |
|-----------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| α,γ-F-Αγ2 | 4.18  | 63.07 | $C_{\gamma 2}$ - $H_{\gamma 2}$ of formylated $\beta$ -O-4 linkages                                                                 | of light              |
| Βα        | 5.44  | 86.82 | $C_{\alpha}\text{-}H_{\alpha}$ of $\beta\text{-}5$ linkages                                                                         |                       |
| Ββ        | 3.49  | 53.45 | $C_{\beta}$ - $H_{\beta}$ of $\beta$ -5 linkages                                                                                    |                       |
| Cα        | 4.65  | 84.89 | $C_{\alpha}$ -H <sub>a</sub> of $\beta$ - $\beta$ linkages                                                                          |                       |
| Сβ        | 3.05  | 53.57 | $C_{\beta}$ - $H_{\beta}$ of $\beta$ - $\beta$ linkages                                                                             |                       |
| Ϲγ        | 41.17 | 71.14 | $C_{\gamma}$ - $H_{\gamma}$ of $\beta$ - $\beta$ linkages                                                                           | Linkages of<br>lignin |
| α         | 4.55  | 80.20 | LCC $C_{\alpha}$ -H <sub><math>\alpha</math></sub> of $\beta$ -O-4 linkages                                                         |                       |
| β         | 4.30  | 83.19 | LCC C <sub><math>\beta</math></sub> -H <sub><math>\beta</math></sub> of $\beta$ -O-4 linkages                                       |                       |
| γ1        | 3.34  | 61.62 | LCC $C_{\gamma 1}$ -H <sub><math>\gamma 1</math></sub> of $\beta$ - <i>O</i> -4 linkages                                            |                       |
| γ2        | 3.61  | 60.15 | LCC C <sub><math>\gamma 2</math></sub> -H <sub><math>\gamma 2</math></sub> of $\beta$ - <i>O</i> -4 linkages                        |                       |