Supporting information

High performance photodetectors based on In₂S₃, In₂S_{1.5}Se_{1.5} and In₂Se₃ nanostructures

Ankurkumar J. Khimani^a*, Sujit A. Kadam^b*, Ranjan Kr. Giri^c, Chetan K. Zankat^d, Yuan-Ron Ma^b

^aDepartment of Physics, Shri A. N. Patel P. G. Institute of Science and Research, Anand -388001, Gujarat, India.

^bDepartment of Physics, National Dong Hwa University, Hualien - 97401, Taiwan

^cP. G. Department of Physics, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat, India.

^dKamani Science College and Prataprai Arts College, Amreli – 365601, Gujarat, India. Corresponding authors: *<u>ankurkhimani@gmail.com</u>, <u>ksujit17@gmail.com</u>

Figure S1. XPS survey spectrum of (a) In_2S_3 , (b) $In_2S_{1.5}Se_{1.5}$, and (c) In_2Se_3

Figure S2. EDS mapping of (a) In_2S_3 , and (b) $In_2S_{1.5}Se_{1.5}$ nanostructures

Figure S3. The EDS spectra of (a) In_2S_3 , (b) $In_2S_{1.5}Se_{1.5}$, and (c) In_2Se_3 nanostructures.

The morphological stability after photo-response studies is illustrated in **Figure S4**. No morphological changes were observed in the In_2S_3 , $In_2S_{1.5}Se_{1.5}$, and In_2Se_3 nanostructures after photo detection application. This clearly indicates that In_2S_3 , $In_2S_{1.5}Se_{1.5}$, and In_2Se_3 nanostructures are highly stable.

Figure S4. SEM images analysis after photo-response studies (a) In_2S_3 nanostructures (b) $In_2S_{1.5}Se_{1.5}$ nanostructures and (c) In_2Se_3 nanofibers