Supplementary Information

Metal-organic Framework-derived Hierarchical Porous N-doped Carbon Supported Sponge-like Pd-SnO₂ Nanostructures for Low-temperature CO Oxidation

Adewale K. Ipadeola^{a,b}, Ahmed Gamal^{a,b,c}, Belal Salah^{a,b}, Yassmin Ibrahim^{a,b}, Aboubakr M. Abdullah^{a*}, Aderemi B. Haruna^c, Kenneth I. Ozoemena^c and Kamel Eid^{b*}

^{a.}Center for Advanced Materials, Qatar University, Doha 2713, Qatar.

^{b.}Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar.

^{c.}Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg, South Africa

*Corresponding authors: bakr@qu.edu.qa; kenneth.ozoemena@wits.ac.za; kamel.eid@qu.edu.qa

Fig. S1. Elemental mapping (a) Pd, (b) Sn, (c) O, (d) Co, (e) C and (f) N of Pd-SnO₂/MOF-PNC

Fig. S2. (a) SEM, (b) TEM, (c) Nanoparticles size distribution, (d) HRTEM, (e) SAED, and (f) Elemental mapping (i) Pd, (ii) Co, (iii) C and (iv) N of Pd-of Pd/MOF-PNC.

Fig. S3. (a) Raman spectra and XPS wide scans of Pd-SnO₂/MOF-PNC and Pd/MOF-PNC

Fig. S4. XRD of Pd/C taken from the JCPDS database

Table S1. XPS and EDX atomic contents of elements in Pd-SnO₂/MOF-PNC and Pd/MOF-PNC

	XPS		EDX		ICP-OES		
	Pd-SnO ₂ /MOF-PNC	Pd/MOF-PNC	Pd-SnO ₂ /MOF-PNC	Pd/MOF-PNC	Pd-SnO ₂ /MOF-PNC	Pd/MOF-PNC	Pd/C
Pd	2.16 At.%	2.71 At.%	2.31 At.%	2.12 At.%	15.90 wt.%	17.70 wt.%	19.78 wt.%
Sn	3.57 At.%	-	1.31 At.%	-	18.12 wt.%	-	-
Со	4.50 At.%	15.88 At.%	2.52 At.%	5.29 At.%	3.16 wt.%	11.24 wt.%	-
С	78.86 At.%	80.97 At.%	66.21 At.%	49.81 At.%	-	-	-
0	10.42 At.%	-	11.93 At.%	23.24 At.%	-	-	-
Ν	0.39 At.%	0.44 At.%	15.72 At.%	20.54 At.%	-	-	-

Fig. S5. (a-c) N₂-adsorption/desorption isotherm and (d-e) pore size distribution of Pd-SnO₂/MOF-PNC, Pd/MOF-PNC, and Pd/C.

Table S2: Binding energies of Pd 3d spectra of Pd-SnO₂/MOF-PNC and Pd/MOF-PNC catalysts

Catalysts	Pd 3d _{5/2}		Pd 3d _{3/2}			
	Pd ^o	Pd ²⁺	Pd ⁴⁺	Pd ⁰	Pd ²⁺	Pd ⁴⁺
Pd-SnO ₂ /MOF-PNC	335.42	336.25	337.92	341.25	342.75	343.86
Pd/MOF-PNC	335.34	336.09	337.58	340.95	341.82	343.61

Fig. S6. High-resolution XPS (a) Pd3d and (b) Sn3d, (c) N_2 -adsorption/desorption isotherm and (d) pore size distribution of Pd-SnO₂/MOF-PNC after the stability test for 108 h.

Fig. S7. (a,b) Temperature-dependent CO conversion, (c) Time-dependent CO conversion, (d) Rate at different CO conversion temperatures, and (e) Arrhenius plots of Pd(1%)-SnO₂/MOF-PNC, Pd-SnO₂, and SnO₂/MOF-PNC.

Table S3. Comparative thermal CO oxidation performance of Pd-based catalysts.

MOF-derived porous N-doped carbon (MOF-PNC), high-entropy fluorite oxide (HEFO), hexagonal boron nitride (h-BN), calcination at 500 °C for 18 h (PC3), hydrotalcite-like (HT), SSZ-13 zeolites (SSZ-13), rod-like (R)

Catalysts	Preparation methods	Morphology	T ₁₀₀ (°C)	Refs
Pd-SnO ₂ /MOF-PNC	Microwave-irradiation/annealing/ etching/microwave-irradiation	Spongy-like	65.6	This work
Pd/MOF-PNC	Microwave-irradiation/annealing /etching/microwave-irradiation	Spongy-like	107.9	This work
Pd/CeSn75-800	Counter precipitation/ calcination	Core-shell	~ 100	1
Pd@SiO ₂ /TiO ₂ -500	Precipitation/ calcination	Core-shell	~ 400	2
CeO ₂ -Pd/S-800-5h	Impregnation/ calcination	2d hexagonal mesopores	~ 75	3
Pd ₁ @HEFO	Ball milling/ annealing/etching	Cubic	170	4
Pd@CeO₂			253	
Pd/MgO(5)-h-BN	Impregnation/ calcination	Nanosheets	140	5
$Ce_{1-x}Pd_xO_{2-\delta}$ (PC3)	hydrothermal/reduction/calcination	Nanocrystals	~ 95	6
Pd/MgAI-HT	Deposition-precipitation	Nanocrystals	~ 90	7
Pd-1%P	Wet- impregnation/ calcination	Fiber-like lamellar	~ 270	8

LaAIPd(0.8)O ₃ -600	Impregnation/	Perovskite	~ 325	9
	Calcination			
Pd@SiO ₂ -673	Polymerization/calcination	Core-shell	~ 130	10
Pd _{0.83} Co _{0.17} /C	Wet impregnation	Nanocrystals	150	11
Pd _{0.5} /CeHfZrSnErO _x	Ultrasound-mediated co-	Cubic	140	12
Pd _{1.0} /CeHfZrSnErO _x	precipitation		150	
Pd-SSZ-13	Ion exchange/ calcination	Cubic particles	~ 175	13
PdO _x /CeO ₂	Radio frequency sputtering	Dendrite-like	250	14
4%Pd/R-CeO ₂	Impregnation/ annealing	Rod, cubic, and octahedral	50	15
Pd-Cu/gC ₃ N ₄ NWs	Protonation/annealing	Nanowires	149	16
Pd/Cu/gC ₃ N ₄ NTs	Protonation/annealing	Nanotubes	154	17
Au/Pd/gC ₃ N ₄ NFs	Protonation/annealing	Nanofibers	144	18
Pd- impeded 3D porous graphene (3D Pd-E-PG)	Low-power microwave radiation	3D porous nanosheets	190	19
AuPd/TiO ₂	Incipient wetness method	Nanospheres	190	20
Pd/Ni-MOF-HNC Pd/Ni-MOF-NC	Microwave-irradiation/ annealing/etching/microwave- irradiation	Hollow nanosheets	114.5 153.8	21
5wt%Pd/Ce-MOF	Hydrothermal/microwave-	Spherical Pd on needle	92	22
7wt%Pd/Ce-MOF	irradiation	shaped support	148	
3wt%Pd/Ce-MOF			190	
2.9%Pd@MIL-101	Hydrothermal/microwave-	Spherical Ps on nanocubes	107	23
4.9%Pd@MIL-101	irradiation	support	147	
2.2%Pd@MIL-101			123	
1.1%Pd@MIL-101			151	
0.6%Pd@MIL-101			151	
0.3%Pd@MIL-101			140	
0.1%Pd@MIL-101			181	
Pd _n (1-Cys) _m /CeO ₂	Chemical reduction/impregnation	Monodispersed spherical	110	24
Pd _n (1-Cys) _m /TiO ₂		nanoclusters	112	
Pd _n (1-Cys) _m /Fe ₃ O ₄			115	
Pd _n (1-Cys) _m /ZnO			155	

References

- 1. O. A. Stonkus, A. V. Zadesenets, E. M. Slavinskaya, A. I. Stadnichenko, V. A. Svetlichnyi, Y. V. Shubin, S. V. Korenev and A. I. Boronin, *Catal. Commun.*, 2022, **172**, 106554.
- 2. A. Takabayashi, F. Kishimoto, H. Tsuchiya, H. Mikami and K. Takanabe, Nanoscale Adv., 2023, 5, 1124-1132.
- 3. P. R. Murthy, S. Munsif, J.-C. Zhang and W.-Z. Li, *Ind. Eng Chem. Res.*, 2021, **60**, 14424-14433.
- 4. H. Xu, Z. Zhang, J. Liu, C.-L. Do-Thanh, H. Chen, S. Xu, Q. Lin, Y. Jiao, J. Wang and Y. Wang, *Nat. Commun.*, 2020, **11**, 3908.
- 5. L. Li, X. Liu, H. He, N. Zhang, Z. Liu and G. Zhang, Catal. Today, 2019, 332, 214-221.
- 6. J. Ye, Y. Xia, D.-g. Cheng, F. Chen and X. Zhan, *Int. J. Hydrog. Energy*, 2019, **44**, 17985-17994.
- 7. X. Lin, J. Zhou, Y. Fan, Y. Zhan, C. Chen, D. Li and L. Jiang, *Dalton Tran.*, 2018, **47**, 14938-14944.
- 8. J. Dong, J. Wang, J. Wang, M. Yang, W. Li and M. Shen, *Catal. Sci. Technol.*, 2017, **7**, 5038-5048.
- 9. Y. J. Kim, J. H. Lim, B. K. Cho, S. B. Hong, I.-S. Nam and J. W. Choung, J. Catal., 2015, **330**, 71-83.
- 10. Y. Xu, J. Ma, Y. Xu, L. Xu, L. Xu, H. Li and H. Li, *RSC Adv.*, 2013, **3**, 851-858.
- 11. I. B. Aragão, F. R. Estrada, D. H. Barrett and C. B. Rodella, *Mol. Catal.*, 2022, **526**, 112377.

- 12. F. Okejiri, J. Fan, Z. Huang, K. M. Siniard, M. Chi, F. Polo-Garzon, Z. Yang and S. Dai, *Iscience*, 2022, 25, 104214.
- 13. D. Chen, H. Lei, W. Xiong, Y. Li, X. Ji, J.-Y. Yang, B. Peng, M. Fu, P. Chen and D. Ye, ACS Catal., 2021, 11, 13891-13901.
- 14. L. S. Kibis, A. A. Simanenko, A. I. Stadnichenko, V. I. Zaikovskii and A. I. Boronin, *J. Phys. Chem. C*, 2021, **125**, 20845-20854.
- 15. X. Zhang, W. Li, Z. Zhou, K. Chen, M. Wu and L. Yuan, *Mol. Catal.*, 2021, **508**, 111580.
- 16. K. Eid, Y. H. Ahmad, A. T. Mohamed, A. G. Elsafy and S. Y. Al-Qaradawi, *Catalysts*, 2018, 8, 411.
- 17. K. Eid, M. H. Sliem, K. Jlassi, A. S. Eldesoky, G. G. Abdo, S. Y. Al-Qaradawi, M. A. Sharaf, A. M. Abdullah and A. A. Elzatahry, Inorg. Chem. Commun., 2019, **107**, 107460.
- 18. K. Eid, M. H. Sliem, A. S. Eldesoky, H. Al-Kandari and A. M. Abdullah, Int. J. Hydrog. Energy, 2019, 44, 17943-17953.
- 19. R. Kumar, J.-H. Oh, H.-J. Kim, J.-H. Jung, C.-H. Jung, W. G. Hong, H.-J. Kim, J.-Y. Park and I.-K. Oh, *ACS Nano*, 2015, **9**, 7343-7351.
- 20. A. Teixeira-Neto, R. Gonçalves, C. Rodella, L. Rossi and E. Teixeira-Neto, *Catal. Sci. Technol.*, 2017, **7**, 1679-1689.
- 21. A. K. Ipadeola, A. Gamal, A. M. Abdullah, A. B. Haruna, K. I. Ozoemena and K. Eid, *Catal. Sci. Technol.*, 2023, **13**, 4873-4882.
- 22. A. Lin, A. A. Ibrahim, P. Arab, H. M. El-Kaderi and M. S. El-Shall, ACS Appl. Mater. Interfaces, 2017, 9, 17961-17968.
- 23. M. S. El-Shall, V. Abdelsayed, S. K. Abd El Rahman, H. M. Hassan, H. M. El-Kaderi and T. E. Reich, *J. Mater. Chem.*, 2009, 19, 7625-7631.
- 24. M. Farrag, M. K. Das, M. Moody and M. Samy El-Shall, *ChemPhysChem*, 2021, **22**, 312-322.