Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Experimental Design of Stencil-Printed High-Performance Organic Electrochemical Transistor

Amir Mohammad Ghafari ¹, Michele Catacchio ², Emil Rosqvist ³, Axel Luukkonen ¹, Anni Eklund ¹, Kim Björkström ¹, Paolo Bollella ^{4,5}, Luisa Torsi ^{1,4,5}, Eleonora Macchia ^{1,2,4}, Ronald Österbacka ¹

- ¹ Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500 Finland
- ² Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125 Italy
- ³ Physical Chemistry, Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku, 20500 Finland
- ⁴ CSGI (Centre for Colloid and Surface Science), Bari, 70125 Italy
- ⁵ Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, 70125 Italy

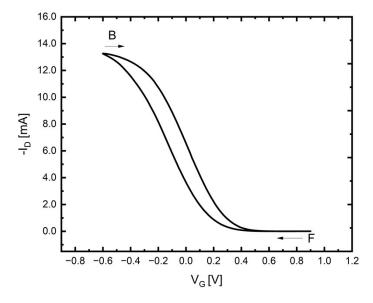


Figure SI1 Transfer Curve of the optimized device (Forward/Backward)

Table. S1 The Experimental Plan reporting average and standard deviation of each response

L (mm)	T (C)	t (min)	on/off ratio	$g_m(mS)$	$V_T(V)$
1.5	90	10	10100 ± 2000	29.0 ± 6.8	0.27 ± 0.07
2.5	90	10	8050 ± 450	29.1 ± 0.3	0.37 ± 0.01
1.5	90	120	6900 ± 700	30.0 ± 3.0	0.46 ± 0.01
2.5	90	120	5600 ± 200	26.9 ± 0.1	0.46 ± 0.01
2.0	115	65	7550 ± 660	31.0 ± 4.9	0.50 ± 0.07
1.5	140	10	2800 ± 300	29.8 ± 0.9	0.62 ± 0.01
2.5	140	10	4500 ± 1100	28.6 ± 5.9	0.56 ± 0.08
1.5	140	120	1270 ± 170	24.8 ± 2.9	0.65 ± 0.03
2.5	140	120	1970 ± 820	26.9 ± 3.8	0.53 ± 0.03
2.0	90	10	6800 ± 1900	22.5 ± 4.3	0.26 ± 0.03

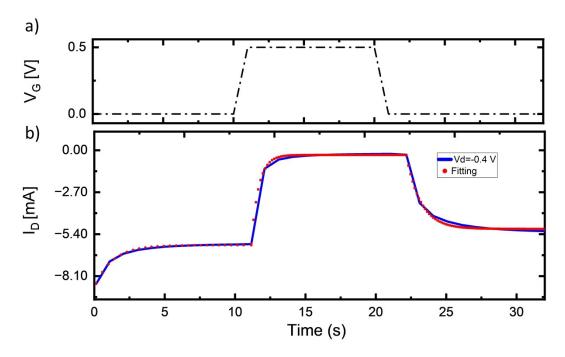


Figure SI2 measured time response of an OECT in response to a square step of the gate voltage while V_D maintained constant (-0.4 V). a) a square V_G pulse of 0.5 V b)monotonic relaxation of Id toward steady state fitted using Bernards' model and estimated time constant is 0.52s.

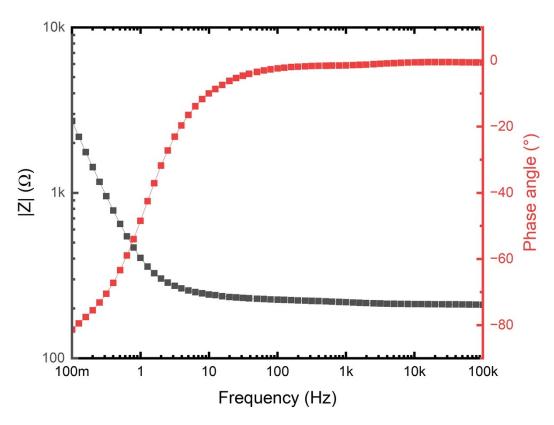


Figure SI3 Bode plots of Electrochemical impedance spectroscopy (EIS) measurement(Counter electrode: platinum wire, working electrode: PEDOT:PSS channel, Reference electrode: Ag/AgCl wire). An equivalent circuit model (Randles) was fitted. The extracted value of raw capacitance is 0.5 mF and volumetric capacitance C* is 4 F/cm3.

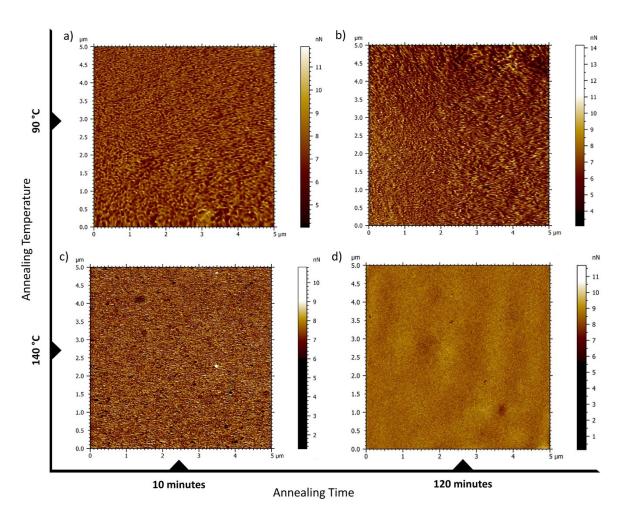


Figure SI4 Representative 5 μ m x 5 μ m adhesion maps of the channel region of 4 devices with L= 1.5 mm, and in a) T=90 °C and t=10 minutes, b) T=90 °C and t=120 minutes, c) T=140 °C and t=10 minutes, d) T=140 °C and t=120 minutes.

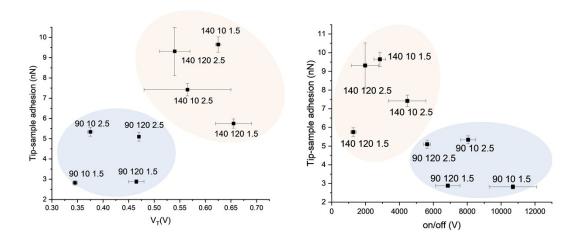


Figure SI5 The tip-surface adhesion of the OECTs measured with AFM plotted versus the on/off ratio (left) and the V_T (right). Blue is 90 °C, pink is 140 °C.