Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Molecular design towards efficient light-emitting copper(I)

halide mononuclear hybrids

Yi Lv[a], Jing Yang[a], Haibo Li[a], Wei Liu*[a] and Gangfeng Ouyang*[a]

[a] School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082,

Guangdong, P. R. China

E-mail: liuwei96@mail.sysu.edu.cn, cesoygf@mail.sysu.edu.cn

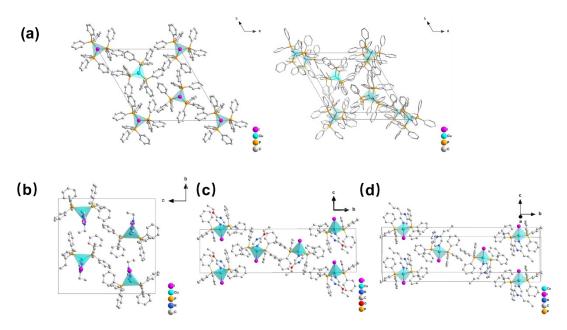


Figure S1. Single-crystal structure of CuI(PPh₃)₃ (a) and compound 1-3 (b) (c) (d).

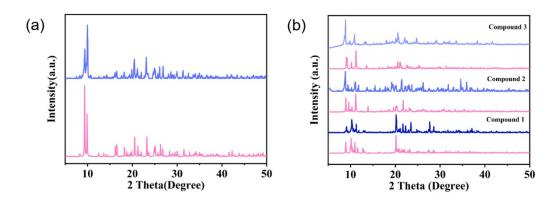


Figure S2. PXRD patterns of simulated (pink lines) and as-made (blue lines) of precursor CuI(PPh₃)₃
(a) and compounds **1-3** (b).

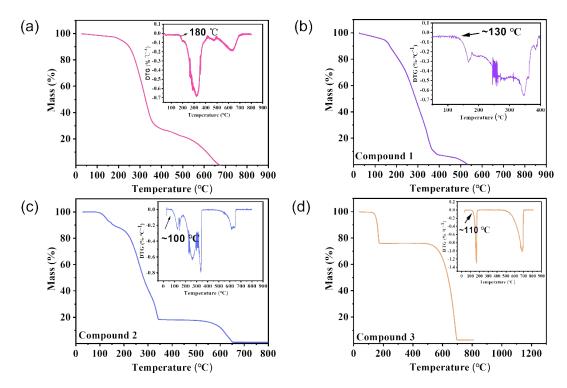


Figure S3. Thermogravimetric analysis curve of CuI(PPh₃)₃ (a) and compound 1-3 (b) (c) (d), respectively.

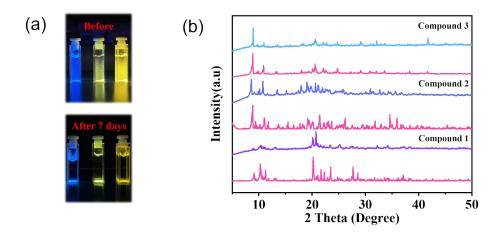


Figure S4. (a) Imagine of compound 1 and 3 before and after soaking in water. (b) PXRD pattern of compound 1-3 before (pink line) and after (blue lines) soaking.

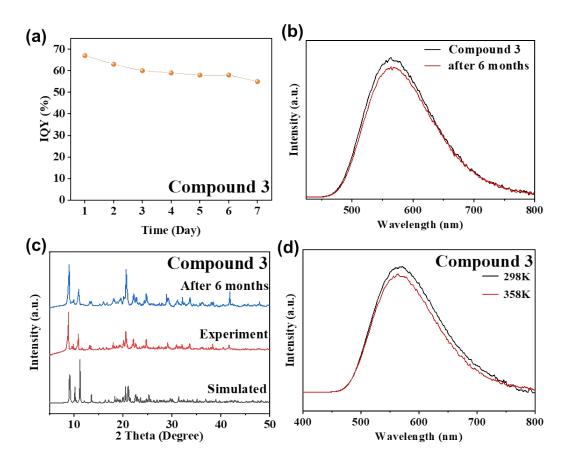


Figure S5. (a) The IQY of the sample compound 3 under UV irradiation. (b) The emission spectra of the fresh-made sample compound 3 and sample stored for 6 months. (c) The PXRD patterns of fresh-made sample and sample compound 3 stored for 6 months. (d) The emission spectra of fresh-made sample compound 3 and sample stored for 6 months

Table S1. The quantum efficiency and stability of reported copper halide hybrids with pyridine and pyrazine derivatives

Compound	λ _{em} [nm]	IQY [%]	Decomposition
			temperature [°C]
0D-CuBr(3-pc) ₃ [1]	535	98	Room temperature
1D-CuI(4-pc) ^[2]	433	35.8	100
1D-CuI(3,5-dm-py) ^[2]	490	35.3	100
1D-CuI(2,6-dm-pz) ^[2]	525	15.4	90
2D-CuI(pz) _{0.5} [3]	12.7	12.7	170
2D-CuI(<i>bpee</i>) _{0.5} ^[3]	695	1.0	300

Reference:

[1] C. Xu, L. Lu, L. Lv, Y. Li, F. Lin, Y. Yang, F. Lin, C. Luo, D. Luo and W. Liu, *Molecular Crystals and Liquid Crystals* **2020**, 709, 54-60.

- [2] X. Zhang, W. Liu, G. Z. Wei, D. Banerjee, Z. Hu and J. Li, *Journal of the American Chemical Society* **2014**, *136*, 14230-14236.
- [3] W. Ki, X. Hei, H. T. Yi, W. Liu, S. J. Teat, M. Li, Y. Fang, V. Podzorov, E. Garfunkel and J. Li, *Chemistry of Materials* **2021**, *33*, 5317-5325.