Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Ti₂O₃ film electrode for water treatment via electrochemical chlorine evolution

Yishu Zhang^a, Caroline Kirk*^a, Neil Robertson*^a

^aSchool of Chemistry, University of Edinburgh, David Brewster Road, Joseph Black Building, Edinburgh, EH9 3FJ, UK

Figure S1. FT-IR spectrum of 400EC30

Figure S2. SEM images of (a) 450EC60 (b) 500EC30 (c) 500EC60

Figure S3. linear fit of DPD reagent UV absorption and NaClO concentration Linear fit: y=2553.74x

Figure S4. Current during free chlorine capture test of 400EC30

Example calculation of Faradaic yield:

The current during free chlorine capture test of 400EC30 was shown in Figure S4.

Calculate the area under curve ($0 \le x \le 3600$ s) by integration calculation. The value is the total charge which have gone through the electrode. For 400EC30, 5.29 C of charge have gone through it in 1 h. The free chlorine concentration (5.56×10^{-4} mol/L) was calculated from the UV-vis spectra data. The amount of substance of free chlorine (calculated as ClO⁻):

$$n_{Cl0^{-}} = c_{Cl0^{-}} \times V_{cell} = 5.56 \times 10^{-4} \, mol \cdot L^{-1} \times 0.025 \, L = 1.39 \times 10^{-5} \, mol$$

Charge used to produce free chlorine: (F is Faraday constant)

$$q_{Clo^{-}} = 2 \times n_{Clo^{-}} \times F = 2 \times 1.39 \times 10^{-5} mol \times 96485 C \cdot mol^{-1} = 2.68 C$$

Faradaic yield:

$$\gamma = \frac{q_{ClO}^{-}}{q} \times 100\% = 50.7\%$$

Electrocatalytic tests

Pre-testing was carried out using Ti_2O_3 electrode and MO+KCl electrolyte in order to find a time for comparison between different electrocatalytic tests. Over 90% of MO was degraded after 1.5h, so times of all tests were then fixed to 1.5h.

The light absorption at characteristic absorption peak of MO/TC in UV-vis spectra is proportional to the concentration of MO/TC. The degradation efficiency (percentage) is calculated by the ratio of concentration before and after the test.

$$\frac{C}{C_0} = \frac{A}{A_0}$$

where C_0 is the concentration before the test, C is the concentration after the test, A_0 is the absorbance before the test, A is the absorbance after the test.

Table S1. Original UV-vis absorption data of MO degradation tests

Time (min)	UV-vis Absorption			
	400EC30-KC1	FTO-KCl	400EC30-Na ₂ SO ₄	
0	1.59	1.524	1.231	
30	0.547	0.989	1.152	
60	0.116	0.772	1.04	
90	0.034	0.566	0.952	

Table S2.	Original	UV-vis abso	orption data	of TC deg	gradation tests
					7

Time (min)	UV-vis Absorption			
	400EC30-KC1	FTO-KCl	400EC30-Na ₂ SO ₄	
0	0.423	0.432	0.438	
30	0.207	0.286	0.373	
60	0.132	0.218	0.363	

90	0.093	0.167	0.34