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Calculated room-temperature density-of-states effective mass: 

To understand the electronic transport behavior, density-of-states effective mass (𝑚𝐷𝑂𝑆
∗) was 

calculated at room temperature using the following equation [1]:  
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Here, e represents electronic charge, h is Planck’s constant, and kB is Boltzmann constant. Fig. 

S3 shows that the substituting Fe and Sn for Co and Sb, respectively, increases 𝑚𝐷𝑂𝑆
∗, which 

is due to the effect of valence band convergence [2, 3]. These results further suggest that heavy 

alloying of Zr and Hf on the Ti site and the small concentration of Bi on the Sb site may lower 

the effect of band convergence. 

The minimum limit of lattice thermal conductivity for TiCoSb:  
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The minimum lattice thermal conductivity of TiCoSb at RT has been calculated using the 

model developed by Cahill and Pohl [4]: 
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The sum is taken over two transverse modes and one longitudinal mode with their 

corresponding sound velocities 𝑣𝑖, 𝑁 is the density of atoms and 𝜃𝑖 is the cut off frequency of 

polarization calculated by 𝜃𝑖 =  𝑣𝑖(ℏ 𝑘𝐵⁄ )(6𝜋2𝑁)1/3. Here, the longitudinal and transverse 

sound velocities (𝑣𝐿= 5699 m s-1 and 𝑣𝑇 = 3237 m s-1, respectively) of TiCoSb were taken from 

the literature [5]. 

 

Calculations of relaxation time of different scattering mechanisms: 

The relaxation time expression of point defect scattering, which originates from mass and strain 

field fluctuations in the lattice can be expressed as[6]: 

                                                          𝜏𝑃𝐷
−1 =
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where 𝑉 is the volume per atom, 𝛤 =  𝛤𝑀 + 𝛤𝑆 is the total disorder scattering parameter with 

𝛤𝑀 and 𝛤𝑆 the disorder scattering parameters owing to the difference in mass and strain field, 

respectively. 𝛤 can be estimated from the 𝜅𝐿 data according to the equations[7]:  
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where 𝜅𝐿
𝑜 represents the lattice thermal conductivity of the ordered system and 𝜅𝐿

𝑑 is the lattice 

thermal conductivity of the alloyed compound. In the present study, we assumed that 

TiCo0.85Fe0.15Sb sample is ordered, while the Zr, Hf and Bi-substituted samples were 

considered as disordered. To calculate the disorder scattering parameters, we assumed 𝛤 =



 𝛤𝑒𝑥𝑝. The chemical compositions of the samples can be conveyed as 

𝐴1𝑔1
𝐴2𝑔2

𝐴3𝑔3
𝐴4𝑔4

…𝐴𝑛𝑔𝑛
, 𝐴𝑖 (𝑖=1, 2, 3, 4,..n) is the crystallographic sublattice, and 𝑔𝑖 is the 

respective degeneracy. The different type of atoms can occupy these sublattices, so that the 

mass, radius, and fractional occupancy can be expressed as 𝑀𝑖
𝑘, 𝑟𝑖

𝑘, and 𝑓𝑖
𝑘 due to the 𝑘𝑡ℎ atom 

at the 𝑖𝑡ℎ sublattice. For the series Ti0.5Zr0.2Hf0.3Co0.85Fe0.15Sb1-xBix, 𝑖=1, 2, and 3 for the Ti, 

Co, and Sb sublattice, respectively, with the corresponding degeneracies 𝑔1 = 𝑔2 = 𝑔3 = 1. The 

scattering parameters due to mass and strain field fluctuations can be calculated as[7]: 
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In Eq. S-3 and S-4, �̅�𝑖 =  ∑ 𝑓𝑖
𝑘

𝑘 𝑀𝑖
1 is the average atomic mass at the 𝑖𝑡ℎ sublattice, �̅�𝑖 =
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3
𝑖=1⁄  is the 

average atomic mass of the compound, and 𝜀𝑖 is the phenomenological adjustable parameters 

for the 𝑖𝑡ℎ sublattice. 

The thermodynamic average Grüneisen parameter (𝛾), which characterizes the lattice 

anharmonicity, can be calculated from 𝜀𝑖 using the following equation [8, 9]: 
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where 𝑣𝑃 is the Poisson ratio that can be obtained from the relation [10]: 
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The Grüneisen parameter for undoped sample TiCo0.85Fe0.15Sb was assessed using the equation 

𝛾 = 3(1 + 𝑣𝑃) 2(2 − 3𝑣𝑃) ⁄ [10]. 



Umklapp phonon scattering effectively reduces the lattice thermal conductivity for T > 0.1𝜃𝐷 

[11]. The relaxation time for Umklapp phonon scattering can be determined by [6]: 

                                                       𝜏𝑈
−1 =

ћ𝛾2
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where, 𝑀 is the average molar mass of atoms, 𝛾 is the above-mentioned Grüneisen parameter.   

In polycrystalline samples, grain boundary scattering is also at play and can be determined by 

the simple equation 𝜏𝐵
−1 = 𝑣 𝐿𝐺⁄  [12], where 𝐿𝐺  is the grain size. Here, 𝐿𝐺  was estimated by 

the Williamson-Hall method using the PXRD data.  

 

Calculation (𝒁𝑻)𝑬𝒏𝒈:  

The cumulative temperature dependency (CTD) model was taken into account in order to 

determine the energy conversion efficiency based on the temperature dependence of TE 

transport characteristics and the ZT values of all samples. For devices operating under a large 

temperature difference, the engineering dimensionless thermoelectric figure of merit (𝑍𝑇)𝐸𝑛𝑔 

determines the maximum conversion efficiency by taking into account the temperature 

dependence of α, ρ, and κ according to the following relations [13, 14] 
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where 𝑇ℎ is the hot side temperature, 𝑇𝑐 is the cold side temperature, Δ𝑇 is the temperature 

difference between the hot and cold sides, and 𝜌 is the electrical resistivity. For all the 

calculations, we assumed a fixed 𝑇𝑐 of 323 K. 

 

 

 

 

 



Tables 

Table S-1: Rietveld refinement parameters of all the samples Ti0.5Zr0.2Hf0.3Co0.85Fe0.15Sb1-xBix. 

 

Sample 

Details 

Rp Rwp Re χ2 a (Å) 

x = 0 40.4 27.1 12.9 4.399 5.9682 

x = 0.01 24.4 18.2 9.3 3.827 5.9692 

x = 0.02 27.4 20.9 10.6 3.912 5.9689 

x = 0.03 24.6 18.5 9.83 3.557 5.9678 

x = 0.04 27.6 21.3 10.6 4.076 5.9773 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 

Fig. S-1: Elemental mapping of the sample Ti0.8Zr0.2Hf0.3Co0.85Fe0.15Sb0.96Bi0.04. 
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Fig. S-2: Comparision of density-of-states effective masses calculated at room temperature  

with those previously reported for TiCo0.85Fe0.15Sb, TiCo0.85Fe0.15Sb0.97Sn0.03 [2] and 

Ti0.8Zr0.2Co0.85Fe0.15Sb0.96Sn0.04 [3]. 
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Fig. S-3: Grüneisen parameter 𝛾 of the samples Ti0.5Zr0.2Hf0.3Co0.85Fe0.15Sb1-xBix at 450 K.  

 

Fig. S-4: The calculated phonon relaxation time for the sample 

Ti0.8Zr0.2Hf0.3Co0.85Fe0.15Sb0.96Bi0.04. 
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