Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis of Quasi-MOF featured with special hub-and-spoke channels and surface NiO species for enhanced total hydrogenation of furfural

Qiuju Fu^{a,b}, Liting Yan^a, Lingzhi Yang^{c*}, Dandan Liu^b, Shuo Zhang^b, Huimin Jiang^b, Wenpeng Xie^b,

Haiyan Wang^{d*} and Xuebo Zhao^{a,b*}

^a School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 (P.R. China)

^b College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, (P.R. China)

^c School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172 (P.R. China)

^d School of Petrochemical Engineering, Liaoning Petrochemical University, Liaoning 113001, (P.R. China)

E-mail addresses: zhaoxuebo@upc.edu.cn (X. Zhao).

Experimental
Materials
Fig. S1 TG of Ni-MOF-74 with ramp rate of 10 $^{\circ}C \cdot min^{-1}$ in N ₂ atmosphere4
Fig. S2 Pore size distribution at 77 K of Ni-MOF-74 and Ni-MOF-74 (T) samples4
Fig. S3 SEM image of Ni-MOF-74 precursor5
Fig. S4 TEM image of Ni-MOF-74 precursor5
Fig. S5 TEM of Ni-MOF-74 (250) sample6
Fig. S6 TEM of Ni-MOF-74 (300) sample6
Fig. S7 The decomposition process of Ni-MOF-74 monitored by mass spectrometry from
room temperature to 300 °C at a rate of 5 °C·min ⁻¹ 7
Fig. S8 Pore size distributions at 77 K of Ni-MOF-74 and the derivants7
Fig. S9 Percentage of micropore and mesopore of Ni-MOF-74 derivatives
Fig. S10 Changes of micropore and mesopore of Ni-MOF-74 derivatives8
Fig. S11 SEM of Ni/NiO/C-12h sample9
Fig. S12 HRTEM of Quasi-MOF-9h sample10
Fig. S13 HRTEM of Ni/NiO/C-12h sample10
Fig. S14 XPS spectra of survey scan11
Fig. S15 C 1s spectra of Quasi-MOFs and Ni/NiO/C-12h samples11
Fig. S16 Ni 2p spectra of Ni-MOF-74 (250) sample12
Fig. S17 Ni 2p spectra of a) commercial NiO powder and b) NiO powder prepared by
treating Ni(OAc) ₂ ·4H ₂ O at 300 °C under air conditions
Fig. S18 Ni 2p spectra of Ni-commercial and Ni/NiO/C-12h samples13
Fig. S19 Ni 2p spectra of Quasi-MOF-3h and Ni-MOF-74 (350) samples13
Fig. S20 The condensation reaction route of FFR and ethanol14
Fig. S21 TEM image of Ni-MOF-74 (350) and corresponding particle size distribution. 14
Fig. S22 XRD pattern of Quasi-MOF-9h after five consecutive runs
Fig. S23 N_2 adsorption-desorption isotherm at 77 K of Quasi-MOF-9h after five
consecutive runs

Fig. S24 TEM pattern of Quasi-MOF-9h after five consecutive runs16
Fig. S25 Correlation between percentage of Ni ^{2+, surf} and THFA yields16
Fig. S26 Correlation between total pore volume and THFA yields17
Fig. S27 Correlation between H ₂ uptake and THFA yields17
Fig. S28 H_2 -TPD curves of the derivants of Quasi-MOF-3h and Ni-MOF-74(350) samples.
Table S1. Textural properties of Ni-MOF-74 and Ni-MOF-74 (T) samples19
Table S2. Textural properties of Ni-MOF-74 derivants treated at 300 °C19
Table S3. Elements analysis of the as-prepared samples (XPS results)20
Table S4. Ratio of integral areas of the Ni 2p XPS high-resolution spectrum20
Table S5. Elements analysis of the as-prepared samples (ICP-OES results)20
Table S6. Catalytic performance of heterogeneous catalysts for the conversion of FFR to
THFA
Reference:

Experimental

Materials.

2, 5-dihydroxyterephthalic acid (denoted as dhtp, 98%) was purchased from Aladdin Chemicals. Nickel acetate tetrahydrate (Ni(OAc)₂·4H₂O, 98%), ethanol (99.7%) and furfural (FFR, 99%) were purchased from Sinopharma Chemical Reagent Co. Ltd (SCRC). Furfuryl alcohol (FFA, 99%) and tetrahydrofurfuryl alcohol (THFA, 99%) were obtained from Damasbeta Chemicals. Deionized water (DIW) was used in all experiments. All the reagents were used without further purification.

Fig. S1 TG of Ni-MOF-74 with ramp rate of 10 $^{\circ}C\cdot min^{-1}$ in N_{2} atmosphere.

Fig. S2 Pore size distribution at 77 K of Ni-MOF-74 and Ni-MOF-74 (T) samples.

Fig. S3 SEM image of Ni-MOF-74 precursor.

Fig. S4 TEM image of Ni-MOF-74 precursor.

Fig. S5 TEM of Ni-MOF-74 (250) sample.

Fig. S6 TEM of Ni-MOF-74 (300) sample.

Fig. S7 The decomposition process of Ni-MOF-74 monitored by mass spectrometry from

room temperature to 300 °C at a rate of 5 °C·min⁻¹.

Fig. S8 Pore size distributions at 77 K of Ni-MOF-74 and the derivants.

Fig. S9 Percentage of micropore and mesopore of Ni-MOF-74 derivatives.

Fig. S10 Changes of micropore and mesopore of Ni-MOF-74 derivatives.

Fig. S11 SEM of Ni/NiO/C-12h sample.

Fig. S12 HRTEM of Quasi-MOF-9h sample.

Fig. S13 HRTEM of Ni/NiO/C-12h sample.

Fig. S14 XPS spectra of survey scan.

Fig. S15 C 1s spectra of Quasi-MOFs and Ni/NiO/C-12h samples.

Fig. S16 Ni 2p spectra of Ni-MOF-74 (250) sample.

Fig. S17 Ni 2p spectra of a) commercial NiO powder and b) NiO powder prepared by

treating Ni(OAc)₂·4H₂O at 300 °C under air conditions.

Fig. S18 Ni 2p spectra of Ni-commercial and Ni/NiO/C-12h samples.

Fig. S19 Ni 2p spectra of Quasi-MOF-3h and Ni-MOF-74 (350) samples.

Fig. S20 The condensation reaction route of FFR and ethanol.

Fig. S21 TEM image of Ni-MOF-74 (350) and corresponding particle size distribution.

Fig. S22 XRD pattern of Quasi-MOF-9h after five consecutive runs.

Fig. S23 N₂ adsorption-desorption isotherm at 77 K of Quasi-MOF-9h after five consecutive runs.

Fig. S24 TEM pattern of Quasi-MOF-9h after five consecutive runs.

Fig. S25 Correlation between percentage of Ni^{2+, surf} and THFA yields.

Fig. S26 Correlation between total pore volume and THFA yields.

Fig. S27 Correlation between H₂ uptake and THFA yields.

Fig. S28 H₂-TPD curves of the derivants of Quasi-MOF-3h and Ni-MOF-74(350)

samples.

Samplag	BET surface area	S _{micro}	V _{total}	
Samples	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	
Ni-MOF-74	1255	1237	0.7	
Ni-MOF-74 (250)	1238	1103	0.56	
Ni-MOF-74 (300)	823	720	0.78	
Ni-MOF-74 (350)	197	19	0.85	

Table S1. Textural properties of Ni-MOF-74 and Ni-MOF-74 (T) samples

Table S2. Textural properties of Ni-MOF-74 derivants treated at 300 °C

Samulas	BET surface area	S _{micro}	V _{total}	H ₂ -uptake ^a
Samples	$(m^2 \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(cm^{3} \cdot g^{-1})$	$(\mu mol \cdot g^{-1})$
Quasi-MOF-3h	823	720	0.78	87.7
Quasi-MOF-6h	563	385	0.91	117.7
Quasi-MOF-9h	261	85	1.02	188.1
Ni/NiO/C-12h	146	0	0.54	72.5

^a calculated by H₂-TPD

Consulta	Element atomic (%)				
Samples	C 1s	O 1s	Ni 2p		
Quasi-MOF-3h	54.82	28.16	17.01		
Quasi-MOF-6h	55.58	25.72	18.69		
Quasi-MOF-9h	50.05	29.12	20.83		
Ni/NiO/C-12h	42.98	31.16	25.86		

Table S3. Elements analysis of the as-prepared samples (XPS results)

Table S4. Ratio of integral areas of the Ni 2p XPS high-resolution spectrum

Ni 2p _{3/2} spectrum	Ni ²⁺ /% (MOF)	Ni ^{2+/%} (NiO)	$Ni^{2+, surf/0}$	Ni ⁰ /%
Quasi-MOF-3h	58.85	3.74	7.50	29.90
Quasi-MOF-6h	40.38	8.26	14.03	37.33
Quasi-MOF-9h	30.93	13.40	23.92	31.74
Ni/NiO/C-12h	6.41	37.07	47.73	8.78

Table S5. Elements analysis of the as-prepared samples (ICP-OES results)

Samples	Ni contents (wt%)
Quasi-MOF-3h	36.5
Quasi-MOF-6h	50.8
Quasi-MOF-9h	55.6
Ni/NiO/C-12h	58.3

	THFA								
Entry	Catalyst	FFR/Cat.	Т	Р	t	Conv.	Sele.	Def	
		(w/w)	(°C)	(MPa)	(h)	(%)	(%)	Kel.	
1	3% Pd/MFI ^a	11.6	220	3.4	5	100	95	1	
2	Ru-MoOx ^b	2.4	100	2	1	92.1	99	2	
3	Ni/C-500 ^a	1	120	1	2	100	100	3	
4	Cu-Ni/CNTs ^c	5.8	130	4	10	100	90.3	4	
5	Cu ₁ Ni ₃ /MgAlO ^c	9.6	150	4	3	>99	93	5	
6	Ni-LN650 ^b	3.2	120	1	5	98.8	87.2	6	
7	Ni-Co/SBA-15°	7.3	90	5	2	100	92.1	7	
8	Ni@NCNTs-600-800 ^b	3.2	100	4	7	100	99.5	8	
9	Ni/MMO-CO3 ^a	5.8	110	3	3	100	99	9	
10	NiCo ^a	6.7	200	8	8	100	93	10	
11	PdCo ₃ O ₄ @NC ^a	1.4	150	2	6	100	95	11	
12	NiCu ^b	2.5	140	4	4	100	95	12	
13	NiCu _{0.33} /C ^c	67	150	3	18	100	94.6	13	
14	PdNiCo/N-CNTs ^c	8	120	3	3	100	97.1	14	
15	Ni(40)/MgO(30)-M ^c	2.5	140	4	4	100	100	15	
16	Ni/C-400°	6	80	3	4	99	96.1	16	
17	Ni/C-400°	6	80	1	4	100	98.5	17	
18	Ni/TiO ₂ -300-450R ^a	1.9	180	2	4	100	25	18	

Table S6. Catalytic performance of heterogeneous catalysts for the conversion of FFR to

19	Pd/LaQS ^a	1.9	120	2	0.5	100	99	19
20	CuNiO _x (1/1)-150 ^a	4.8	120	3	6	100	97	20
21	Pd/KCC 0.3 ^a	3	50	2	6	100	85	21
22		6	70	2	4	100	0.9	This
22	Quasi-MOF-9h ^c	1as1-MOF-9h° 6	70	3	3 4	100	98	work

^a2-isopropyl alcohol, ^bwater, ^cethanol

Reference:

- N. S. Biradar, A. M. Hengne, S. N. Birajdar, P. S. Niphadkar, P. N. Joshi and C. V. Rode, ACS Sustain. Chem. Eng., 2013, 2, 272-281.
- Y. Cao, H. Zhang, K. Liu, Q. Zhang and K. Chen, ACS Sustain. Chem. Eng., 2019, 7, 12858-12866.
- 3 Y. Su, C. Chen, X. Zhu, Y. Zhang, W. Gong, H. Zhang, H. Zhao and G. Wang, *Dalton Trans.*, 2017, 46, 6358-6365.
- 4 L. Liu, H. Lou and M. Chen, Int. J. Hydrogen Energy, 2016, 41, 14721-14731.
- 5 J. Wu, G. Gao, J. Li, P. Sun, X. Long and F. Li, *Appl. Catal. B*, 2017, 203, 227-236.
- C. Chen, R. Fan, W. Gong, H. Zhang, G. Wang and H. Zhao, *Dalton Trans.*, 2018, 47, 17276-17284.
- 7 S. Li, Y. Wang, L. Gao, Y. Wu, X. Yang, P. Sheng and G. Xiao, *Microporous Mesoporous Mater.*, 2018, 262, 154-165.
- 8 Wanbing Gong, Chun Chen, Haimin Zhang, G. Wang and H. Zhao, *Catal. Sci. Technol.*, 2018, 8, 5506-5514.
- 9 X. Meng, Y. Yang, L. Chen, M. Xu, X. Zhang and M. Wei, ACS Catal., 2019, 9, 4226-4235.
- 10 J. Parikh, S. Srivastava and G. C. Jadeja, Ind. Eng. Chem. Res., 2019, 58, 16138-16152.
- 11 S. Pendem, S. R. Bolla, D. J. Morgan, D. B. Shinde, Z. Lai, L. Nakka and J. Mondal, *Dalton Trans.*, 2019, 48, 8791-8802.
- V. Sánchez, P. Salagre, M. D. González, J. Llorca and Y. Cesteros, *Molecular Catalysis*, 2020, 490, 110956.
- F. Tang, L. Wang, M. Dessie Walle, A. Mustapha and Y. Liu, *J. Catal.*, 2020, 383, 172-180.
- 14 L. Ruan, A. Pei, J. Liao, L. Zeng, G. Guo, K. Yang, Q. Zhou, N. Zhao, L. Zhu and B. H. Chen, *Fuel*, 2021, 284, 119015.
- C. Sunyol, R. English Owen, M. D. González, P. Salagre and Y. Cesteros, *APPL CATAL A-GEN*, 2021, 611, 117903.
- 16 D. Liu, Q. Fu, C. Feng, T. Xiang, H. Ye, Y. Shi, L. Li, P. Dai, X. Gu and X. Zhao,

Nanomaterials, 2023, 13, 285.

- Q. Fu, L. Yan, D. Liu, S. Zhang, H. Jiang, W. Xie, L. Yang, Y. Wang, H. Wang and X. Zhao, *Appl. Catal. B*, 2024, 343, 123501.
- 18 J. Zhang, D. Mao, H. Zhang and D. Wu, APPL CATAL A-GEN, 2023, 660, 119206.
- 19 X. Zhao, Y. Wang, Z. Zhai, C. Zhuang, D. Tian, H. Guo, X. Zou and T. X. Liu, ACS Applied Nano Materials, 2023, 6, 8315-8324.
- W. Fang, S. Liu, A. K. Steffensen, L. Schill, G. Kastlunger and A. Riisager, ACS Catal.,
 2023, 13, 8437-8444.
- 21 Y. E. Kim, K.-Y. Lee and M. S. Lee, *Catal. Today*, 2024, **426**, 114392.