[Supplementary Information]

Thermo-responsive injectable hydrogels from linear and starshaped block copolymers composed of amino acid-derived vinyl polymer and poly(ethylene glycol) for biomedical applications

Mitsuki Nakamura¹, Shin-nosuke Nishimura^{1*}, Nobuyuki Higashi¹, Tomoyuki Koga^{1*}

 Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, JAPAN

Corresponding Author

*Email: tkoga@mail.doshisha.ac.jp (T. K.)

*Email: shnishim@mail.doshisha.ac.jp (S. N.)

Figure S1. (A) ¹H-NMR spectrum of the macroinitiator, PEG-Br₂, and (B) ¹³C-NMR spectra of the PEG-Br₂ (red line) and PEG (black line) in CDCl₃ at 25 °C (Internal standard: TMS). The inset in (B) shows the magnitude spectra.

Figure S2. (A) ¹H-NMR spectrum of the macroinitiator, 4-arm PEG-Br₄, and (B) ¹³C-NMR spectra of the 4-arm PEG-Br₄ (red line) and 4-arm PEG-NH₂ (black line) in CDCl₃ at 25 °C (Internal standard: TMS). The inset in (B) shows the magnitude spectra.

Figure S3. ¹H-NMR spectra of the linear-type PNAAMe/PEG block copolymers, 1_n ; n=101 (A), 250 (B), and 321 (C) in CDCl₃ at 25 °C (Internal standard: TMS).

Figure S4. ¹H-NMR spectra of the star-shape PNAAMe/PEG block copolymers, 2_n ; n=28 (A), 66 (B), and 118 (C) in CDCl₃ at 25 °C (Internal standard: TMS).

Figure S5. SEC charts (eluent: DMF (10 mM LiBr), 40 °C) of linear-type (1_n) (A) and startype (2_n) (B) PNAAMe/PEG block copolymers. In these figures, SEC charts for corresponding macroinitiators were also included for comparison.

•

Figure S6. Photographs of thermo-reversible hydrogel formations of 1_{101} , 1_{250} , 2_{28} , and 2_{66} at various concentrations indicated.

Figure S7. Temperature dependences of the storage (G') and loss (G") moduli for $\mathbf{1}_{101}$ (A), $\mathbf{1}_{250}$ (B), $\mathbf{2}_{28}$ (C), and $\mathbf{2}_{66}$ (D) from 10 °C to 40 °C at 6.3 rad/s and 1% strain. [polymer]=25 wt%.

Figure S8. Plots of storage moduli (G') of 1_n (open triangle) and 2_n -hydrogel (closed circle) (37°C, 6.3 rad/s, and strain 1%) as a function of F_{PNAAMe} values (PNAAMe length). [polymer]=25 wt%.

Figure S9. Recovery of stiffness (G') of **2**₁₁₈-hydrogel (25 wt%) at 1% strain amplitude after large-amplitude oscillatory breakdown.

Figure S10. Biocompatibility tests for the PNAAMe/PEG block copolymers, **1**₁₀₁, **1**₂₅₀, **2**₂₈, and **2**₆₆. (A and B) Cell viability (RAW264.7) cultured for 24 h in the presence of the polymers (0.01–10 mg/mL) using the WST-8 assay. (C and D) NO production test of the polymers using RAW264.7 cultured for 24 h.