Support Information:

Two-Dimensional g-CNs/GeC Heterojunctions: Desirable Visible-Light Photocatalyst and Optoelectronic Device

Ying Zhang ${ }^{\text {a }}$, Liang Xu ${ }^{\text {a,b,c,* }}$, Hang Liu ${ }^{\text {a }}$, Bo Zhang ${ }^{\text {a }}$, Ling-Ling Wang ${ }^{\text {c }}$

${ }^{\text {a }}$ Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
${ }^{\mathrm{b}}$ Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000,

China

${ }^{\text {c }}$ Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, China

Fig. S1 The top views (top) and side views (bottom) of the six different stacked $\mathrm{C}_{2} \mathrm{~N} / \mathrm{GeC}$ heterojunctions with (a) AB1 stacking, (b) AB2 stacking, (c) AB3 stacking, (d) AB4 stacking, (e) AB5 stacking, and (f) AB6 stacking, which are drawn by Visualization for Electronic and Structural Analysis (VESTA) software package.

(a) AB 1

(d) AB4

(b) AB2

(e) AB5

(c) AB3

(f) AB6

Fig. S2 The top views (top) and side views (bottom) of the six different stacked $\mathrm{C}_{3} \mathrm{~N} / \mathrm{GeC}$ heterojunctions with (a) AB1 stacking, (b) AB2 stacking, (c) AB3 stacking, (d) AB4 stacking, (e) AB5 stacking, and (f) AB6 stacking, which are drawn by Visualization for Electronic and Structural Analysis (VESTA) software package.

(a) AB 1

(d) AB4

(e) $\mathrm{AB5}$

(c) AB3

(f) AB6

Fig. S2 The top views (top) and side views (bottom) of the six different stacked g$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{GeC}$ heterojunctions with (a) AB1 stacking, (b) AB2 stacking, (c) AB3 stacking, (d) AB4 stacking, (e) AB5 stacking, and (f) AB6 stacking, which are drawn by Visualization for Electronic and Structural Analysis (VESTA) software package.

Table S1 The optimized-geometry interlayer distance $d(\AA)$, interlayer binding energy $E_{b}(e V /$ atom $)$ of $\mathrm{C}_{2} \mathrm{~N} / \mathrm{GeC}, \mathrm{C}_{3} \mathrm{~N} / \mathrm{GeC}$ and $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{GeC}$ heterojunctions.

$C_{2} N / G e C$	$A B 1$	$A B 2$	$A B 3$	$A B 4$	$A B 5$	$A B 6$
$d(\AA)$	3.472	3.492	3.487	3.469	3.498	3.497
$E_{b}(e V)$	-0.360	-0.365	-0.364	-0.360	-0.361	-0.368
$C_{3} N / G e C$	$A B 1$	$A B 2$	$A B 3$	$A B 4$	$A B 5$	$A B 6$
$d(\AA)$	3.478	3.481	3.492	3.480	3.481	3.485
$E_{b}(e V)$	-0.780	-0.780	-0.780	-0.781	-0.803	-0.800
$g-C_{3} N_{4} / G e C$	$A B 1$	$A B 2$	$A B 3$	$A B 4$	$A B 5$	$A B 6$
$d(\AA)$	3.264	3.235	3.187	3.327	3.185	3.254
$E_{b}(e V)$	-3.082	-3.357	-3.140	-3.170	-3.288	-3.086

