Supporting Information

Rational design of carbon nanocomposites with the hierarchical porosity: a strategy to improve capacitive energy storage performance

Agnieszka Hryniewicka^{1*}, Joanna Breczko^{1,2}, Gabriela Siemiaszko¹, Krzysztof Brzezinski³, Anna Ilnicka⁴, Artur P. Terzyk⁴, and Marta E. Plonska-Brzezinska^{1*}

 ¹ Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
 ² Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
 ³ Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
 ⁴ Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin Street 7, 87-100 Torun, Poland

Table of contents

METHODS
Figure S1. ¹ H NMR spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2)
Figure S2. ¹³ C NMR spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2)
Figure S3. High-resolution mass spectrum of spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2)
Figure S4. High-resolution mass spectrum of 1,2,4,5-tetrakis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (4CN-2). 8
Table S1. Surface elemental composition of carbon samples determined by XPS and elemental analysis results
Figure S5. XPS spectra of the C 1s spectral region of the CTF and CTF-CNO materials
Figure S6. ¹³ C CP-MAS NMR spectra of the CTF and CTF-CNO materials
Table S2. Chemical state, positions, FWHM, and relative area percentages of the deconvoluted C 1speaks from the XPS analyses of CTF materials.12
Table S3. Chemical state, positions, FWHM, and relative % area of the deconvoluted C 1s peaks fromthe XPS analyses of CTF-CNO materials.12
Table S4. Chemical state, positions, FWHM, and relative area percentages of the deconvoluted N 1speaks from XPS analyses of CTF materials.13
Table S5. Chemical state, positions, FWHM, and relative % area of the deconvoluted N 1s peaks fromXPS analyses of CTF-CNO materials.13
Figure S7. The differential pore size distribution of CTF and CTF-CNO materials
Figure S8. The cumulative pore volume of CTF and CTF-CNO materials14
Figure S9. Nyquist plots obtained for GCE electrodes covered with (a) CTF and (b) CTF-CNO materials at 0.4 V. (c) EIS spectra recorded for GCE modified with CTF-4CNO-1-CNO at different potentials and electrical equivalent circuit (inset)
Figure S10. TGA/DSC analysis of the selected pristine CTF and CTF-CNO materials. Analysis was performed in an air atmosphere
Table S6. Electrochemical properties of porous carbon materials containing triazines and carbon nanostructures. 17
References

METHODS

High-resolution transmission electron microscopy (HRTEM) was performed using a Titan G2 HRTEM microscope that was operated at 300 kV (FEI company) equipped with a field emission (FEG) gun. HRTEM imaging of the sample microstructure was performed in bright field mode using a CCD camera as a detector.

¹H and ¹³C NMR spectra were recorded on an Agilent VNMRS system that was operated at 500 MHz for ¹H NMR and 126 MHz for ¹³C NMR. The chemical shifts δ are given in ppm, are in reference to the solvent peak of CDCl₃, and are defined at δ 7.26 (¹H NMR) or δ 77.16 (¹³C NMR). The following abbreviations were used for multiplicities: s (singlet), d (doublet), m (multiplet). ¹³C CP-MAS NMR spectra were performed using Bruker Avance III 400 Wide Bore (9,4 T). The elemental analysis was performed using the Elementar Unicube CHNS analyzer.

High-resolution mass spectra were acquired using a MALDISynapt G2-S HDMS (Waters Corporation, Milford, MA, USA) coupled to a Waters TQD mass spectrometer (electrospray ionization mode ESI-tandem quadrupole).

Fourier transform infrared (FTIR) spectroscopy was performed using a Thermo Scientific Nicolet IN10 MX microscope (USA). The spectra were recorded with a KBr pellet using a microscope in transmission mode. The spectra were collected at a resolution of 4 cm⁻¹, and 64 scans were averaged to obtain a single spectrum.

For X-ray powder diffraction (XRD), the samples were loaded into glass capillaries (Hampton Research, Glass Number 50) with a diameter of 0.5 mm. The XRD data were measured using CuK α radiation at 25 °C on an XtalLAB Synergy diffractometer (Rigaku) equipped with the Hybrid Pixel 2-dimensional detector HyPix-6000HE. For all experiments, the sample-to-detector distance was set to 148 mm, and the data were recorded over a 2 θ

angle range from 10° to 100° using the standard phi scan procedure. In all experiments, the exposure time was 60 seconds.

X-ray photoelectron spectroscopy (XPS) was performed using an ultrahigh-vacuum (UHV) chamber (PREVAC) (base pressure below 10-8 mbar) with a nonmonochromatic AlKα (1486.7 eV; 12 kV; 30 mA) radiation source (VG Scienta SAX 100) and monochromator (VG Scienta XM 780). The emitted photoelectrons were detected using a Scienta R4000 hemispherical analyzer. For all samples, a low-resolution survey run (0–1350 eV) at a pass energy of 200 eV was performed. The C 1s and N 1s high-resolution spectra were recorded at a pass energy of 20 eV at room temperature. The C 1s and N 1s spectra were fitted by Gaussian–Lorentzian functions after Shirley background subtraction was performed. The peaks were fitted using CasaXPS software (Casa Software Ltd.). The C KLL spectra (XAES) were obtained by XPS. The first-derivative XAES spectra were obtained using a 25-point Savitzky–Golay quadratic polynomial differentiation method.

Nitrogen adsorption-desorption isotherms (-196 °C) were measured using an ASAP 2020 Plus 2.00A (Micromeritics, USA) adsorption apparatus. Before the adsorption-desorption measurements were performed, all the samples were subjected to vacuum evacuation at 200 °C for at least 24 h.

A PGSTAT 302N potentiostat (Autolab B.V., Metrohm, Utrecht, the Netherlands) connected to a three-electrode system (working glassy carbon electrode (GCE, 10 x 2 mm), a silver/silver chloride reference electrode and an auxiliary platinum mesh electrode) or to a two-electrode system (two identical glassy carbon electrodes (GCE, 10 x 2 mm)) was used in voltammetric (CV) and galvanostatic (GCD) measurements, respectively. Electrochemical impedance spectroscopy (EIS) measurements were also performed in three-electrode configuration. EIS spectra were recorded using a 5 mV amplitude. All EIS spectra were recorded over the frequency range of 0.1 Hz to 10 kHz at open circuit potential (OCP). Before the measurements, the surface of the GCE electrode was polished by alumina (0.3 mm) and

diamond (0.25 mm) paste and modified by deposition of 15 μ L of a solution containing CTF or CTF-CNO material dispersed in ethanol (3 mg mL⁻¹) with the addition of 1 mg of conductive carbon paint (CP, SPI Supplies, USA) as a binder. The modification was complete when the solvent was evaporated at RT. The measurements were performed at the room temperature. The calculated electrode mass loading was about 0.86 mg/cm². We performed at least 10 replicates for each electrochemical measurement. The CV, GCD, and EIS studies show representative curves for each group of measurements. Where calculated values for these methods are given, they are averaged, and the standard deviation is given for CVs: 10 measurements; GCD and EIS: 5 measurements. All electrochemical analyses were performed in a 1 M H₂SO₄ solution.

In order to calculate specific capacitance, specific energy and specific power values the appropriate formulas were used.

For CV calculations:

$$C_{s} = \frac{\int_{V_{1}}^{V_{2}} i(V) dV}{2\nu m (V_{2} - V_{1})}$$

where: C_s - specific capacitance, i - current, v - scan rate, m - mass of material, V - potential For GCD calculations:

$$C_s = \frac{it_d}{m\Delta V}$$

$$E_S = \frac{C_s \cdot (\Delta V)^2}{2 \cdot 3.6}$$

$$P_S = \frac{3600 \cdot E_S}{t_d}$$

where: C_s - specific capacitance, i - current, t_d - time of discharge, m - mass of material, ΔV -potential difference, E_s - specific energy, P_s - specific power.

 E_S and P_S were calculated were calculated from the mean values of the GCD measurements given in Table 2.

¹H NMR and ¹³C NMR SPECTROSCOPY

Figure S1. ¹H NMR spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2).

Figure S2. ¹³C NMR spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2).

MASS SPECTROMETRY

Figure S3. High-resolution mass spectrum of spectrum of 1,4-bis(6-methylbenzo[d]thiazole-2-yl)-2,5-bis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (2CN-2).

Figure S4. High-resolution mass spectrum of 1,2,4,5-tetrakis(4-cyanophenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (4CN-2).

X-RAY PHOTOELECTRON SPECTROSCOPY and ELEMENTAL ANALYSIS

	X	PS analysi	S	Elemental analysis						
Sample	El	ements (%	b)	Elements (%)						
	С	Ν	other	С	Н	Ν	S			
CTF-2CN-1	86.5	6.6	6.8	64.63	1.50	6.98	-			
CTF-2CN-1-CNO	85.3	8.1	6.6	65.16	2.17	9.38	-			
CTF-2CN-2	81.6	5.4	13	55.56	1.11	5.28	9.23			
CTF-2CN-2-CNO	90.9	4.8	4.2	66.89	1.25	5.49	11.36			
CTF-4CN-1	86.5	7.5	6	67.28	1.70	7.56	-			
CTF-4CN-1-CNO	84.1	9.5	6.4	65.33	2.26	9.76	-			
CTF-4CN-2	85.7	6.5	7.7	71.38	1.36	7.53	-			
CTF-4CN-2-CNO	89.9	4.3	5.7	73.34	1.76	6.25	-			

Table S1. Surface elemental composition of carbon samples determined by XPS and elemental analysis results.

Figure S5. XPS spectra of the C 1s spectral region of the CTF and CTF-CNO materials.

CP-MAS ¹³C NMR SPECTROSCOPY

- region of triazine carbon signals

Figure S6. ¹³C CP-MAS NMR spectra of the CTF and CTF-CNO materials.

		CTF-2CN-1				CTF-2CN-2			CTF-4CN-1			CTF-4CN-2		
Region	Species	Peak	FWHM	%	Peak	FWHM	%	Peak	FWHM	%	Peak	FWHM	%	
		(ev)	(\mathbf{ev})	Area	(ev)	(\mathbf{ev})	Area	(ev)	(\mathbf{ev})	Area	(ev)	(\mathbf{ev})	Area	
C 1s A	$C-H sp^3$	285.0	0.87	26.5	285.0	0.87	22.1	285.0	0.85	27.1	285.0	0.87	27.4	
C 1s B	$C=C sp^2$	284.5	0.91	37.7	284.5	0.91	32.7	284.5	0.88	39.0	284.5	0.91	37.8	
C 1s C	$C-C sp^3$	285.6	0.92	14.1	285.7	0.92	17.7	285.6	0.89	14.0	285.6	0.92	13.7	
C 1s D	C=N	286.3	1.01	9.7	286.4	1.01	10.6	286.4	0.98	9.4	286.4	1.01	9.2	
C 1s E	C-O-C	287.1	0.88	3.2	287.2	0.88	4.3	287.1	0.86	2.8	287.1	0.88	3.1	
C 1s F	C=O	287.8	0.89	2.4	287.9	0.89	1.8	287.9	0.87	1.8	287.8	0.89	1.9	
C 1s G	C-N	288.9	1.17	2.1	289.1	1.26	5.1	288.9	1.13	1.3	288.9	1.27	2.8	
C 1s DCS	defects in carbon structure	283.8	0.80	4.4	283.9	0.85	5.7	283.9	0.86	4.7	283.8	0.86	4.0	

Table S2. Chemical state, positions, FWHM, and relative area percentages of the deconvoluted C 1s peaks from the XPS analyses of CTF materials.

Table S3. Chemical state, positions, FWHM, and relative % area of the deconvoluted C 1s peaks from the XPS analyses of CTF-CNO materials.

	CTF-2CN-1-CNO		CTF-2CN-2-CNO			CTF-4CN-1-CNO			CTF-4CN-2-CNO				
Region	Species	Peak (eV)	FWHM (eV)	% Area	Peak (eV)	FWHM (eV)	% Area	Peak (eV)	FWHM (eV)	% Area	Peak (eV)	FWHM (eV)	% Area
C 1s A	C-H sp ³	285.0	0.87	25.4	285.0	0.85	22.9	285.0	0.87	24.9	285.0	0.85	23.1
C 1s B	$C=C sp^2$	284.5	0.91	34.5	284.5	0.88	49.1	284.5	0.91	40.4	284.5	0.88	46.9
C 1s C	$C-C sp^3$	285.6	0.92	16.2	285.6	0.90	10.8	285.6	0.92	14.0	285.6	0.89	11.6
C 1s D	C=N	286.4	1.01	9.8	286.4	0.99	6.8	286.4	1.01	8.7	286.4	0.98	7.7
C 1s E	C-O-C	287.1	0.89	3.8	287.1	0.86	2.4	287.1	0.89	3.2	287.1	0.86	2.6
C 1s F	C=O	287.8	0.90	2.2	287.8	0.87	1.3	287.9	0.90	2.1	287.8	0.87	1.1
C 1s G	C-N	288.9	1.17	2.9	288.9	1.14	1.3	288.9	1.17	1.7	288.9	1.27	1.9
C 1s DCS	defects in carbon structure	283.9	0.78	5.3	283.8	0.79	5.7	283.9	0.86	5.1	283.8	0.78	5.1

		CTF-2CN-1			CTF-2CN-2	2	CTF-4CN-1			CTF-4CN-2			
Region	Species	Peak	FWHM	%	Peak	FWHM	%	Peak	FWHM	%	Peak	FWHM	%
		(eV)	(eV)	Area	(eV)	(eV)	Area	(eV)	(eV)	Area	(eV)	(eV)	Area
N 1s A	triazine	398.3	1.47	38.3	398.4	1.47	31.3	398.3	1.48	41.2	399.0	1.44	38.4
N 1s B	pyrrolic	400.0	1.49	33.6	400.0	1.47	37.5	400.0	1.48	28.5	400.0	1.47	30.8
N 1s C	tertiary graphitic amine	401.2	1.49	23.6	401.2	1.49	24.4	401.2	1.48	23.3	401.1	1.47	25.0
N 1s D	quaternary graphitic amine	402.8	1.62	4.5	403.0	1.61	6.9	402.8	1.62	7.1	402.9	1.62	5.9

Table S4. Chemical state, positions, FWHM, and relative area percentages of the deconvoluted N 1s peaks from XPS analyses of CTF materials.

Table S5. Chemical state, positions, FWHM, and relative % area of the deconvoluted N 1s peaks from XPS analyses of CTF-CNO materials.

		CTF-2CN-1-CNO		СТ	F-2CN-2-C	NO	CTF-4CN-1-CNO			CTF-4CN-2-CNO			
Region	Species	Peak (eV)	FWHM (eV)	% A rea	Peak (eV)	FWHM (eV)	% A rea	Peak (eV)	FWHM (eV)	% A rea	Peak	FWHM (eV)	% A rea
		((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$(\mathbf{U}\mathbf{V})$	Alta		$(\mathbf{U}\mathbf{V})$	Alta		$(\mathbf{c}\mathbf{v})$	Alta		$(\mathbf{U}\mathbf{V})$	Анса
N 1s A	triazine	398.4	1.46	41.9	398.3	1.46	41.2	398.3	1.48	43.1	398.4	1.48	37.6
N 1s B	pyrrolic	400.0	1.47	32.6	400.0	1.46	31.2	400.0	1.46	34.0	400.0	1.49	31.3
N 1s C	tertiary graphitic amine	401.1	1.47	21.3	401.2	1.48	21.7	401.2	1.47	17.9	401.2	1.48	25.2
N 1s D	quaternary graphitic amine	402.9	1.61	4.1	402.8	1.61	6.0	402.9	1.63	5.1	402.9	1.62	5.9

Figure S7. The differential nanopore size distribution of CTF and CTF-CNO materials.

Figure S8. The cumulative nanopore volume of CTF and CTF-CNO materials.

Figure S9. Nyquist plots obtained for GCE electrodes covered with (a) CTF and (b) CTF-CNO materials at 0.4 V. (c) EIS spectra recorded for GCE modified with **CTF-4CNO-1-CNO** at different potentials and electrical equivalent circuit (inset).

Figure S10. TGA/DSC analysis of the selected pristine CTF and CTF-CNO materials. Analysis was performed in an air atmosphere.

	Material/Precursor	Temperature	Content of N	S _{BET}	Specific cap (F g	acitance ¹)	Ref.
		of pyrolysis	(at%)	$(m^2 g^2)$	3-electrodes	2-electrodes	
		600	11.8	1558	220	-	1
		700	8.2	2581	171	-	2
		400	12.44	1175	248	-	
		450	11.06	1565	276	-	
	NC-	500	10.74	1681	285	-	
	dicyanobenzene (terephtalonitrile)	550	9.26	1724	298	-	3
		600	9.01	2197	263	-	
		650	7.77	2098	273	-	
		700	5.75	2237	243	-	
	NC	550	-	1283	210	-	
		600	-	-	231	-	3
r		650	-	-	202	-	
CTF		700	-	1527	198	-	
ine	-N	400	28	680	-	0	
rist	NC-	500	23.5	1120	-	0	4
8	ĊN	600	15.8	1940	-	60	
	3,5-dicyanopyridine	700	12.7	3120	-	141	
		500	34.2	460	79	-	
		600	25.8	443	187	-	
	NC ~	700	20.9	1293	404	-	5
	fumaronitrile	800	16.5	1234	143	-	
		900	14	1268	220	-	
	NC	600	4.7	1451	280	-	1

Table S6. Electrochemical properties of porous carbon materials containing triazine framework and their hybrids with carbon nanostructures.

Pristine CTF

S19

s hybrids	NC	800	6.3	1268.5	325	-	14	
	2CNDD and CNOs	600	4.5	1054	375	-	13	
ture	ZUNPP and CNOS	700	3.6	2694	638	-		
CTF-carbon nanostuc	2CN-1 and CNOs	700	8.1	2143	376	131 (8 A g ⁻¹)	this study	
	4CN-1 and CNOs	700	9.5	2126	498	302 (2 A g ⁻¹) 237 (8 A g ⁻¹)		
	2CN-2 and CNOs	700	4.8	1625	472	205 (8 A g ⁻¹)		
	4CN-2 and CNOs	700	4.3	1786	417	171 (8 A g ⁻¹)		

References

- Zhang, Y.; Zhang, B.; Chen, L.; Wang, T.; Di, M.; Jiang, F.; Xu, X.; Qiao, S. Rational Design of Covalent Triazine Frameworks Based on Pore Size and Heteroatomic Toward High Performance Supercapacitors. J. Colloid Interface Sci. 2022, 606, 1534–1542. https://doi.org/10.1016/j.jcis.2021.08.087.
- (2) Baumann, D.; Lee, C.; Wan, C.; Sun, H.; Duan, X. Hierarchical Porous Carbon Derived from Covalent Triazine Frameworks for High Mass Loading Supercapacitors. ACS Materials Lett. 2019, 1, 320–326. https://doi.org/10.1021/acsmaterialslett.9b00157.
- (3) Hao, L.; Luo, B.; Li, X.; Jin, M.; Fang, Y.; Tang, Z.; Jia, Y.; Liang, M.; Thomas, A.; Yang, J.; Zhi, L. Terephthalonitrile-Derived Nitrogen-Rich Networks for High Performance Supercapacitors. *Energy Environ. Sci.* **2012**, *5*, 9747–9751. https://doi.org/10.1039/C2EE22814A.
- (4) Troschke, E.; Leistenschneider, D.; Rensch, T.; Grätz, S.; Maschita, J.; Ehrling, S.; Klemmed, B.; Lotsch, B. V.; Eychmüller, A.; Borchardt, L.; Kaskel, S. In Situ Generation of Electrolyte inside Pyridine- Based Covalent Triazine Frameworks for Direct Supercapacitor Integration. *ChemSusChem* 2020, 13 (12), 3192–3198. https://doi.org/10.1002/cssc.202000518.
- (5) Wang, D.-G.; Wang, H.; Lin, Y.; Yu, G.; Song, M.; Zhong, W.; Kuang, G.-C. Synthesis and Morphology Evolution of Ultrahigh Content Nitrogen-Doped, Micropore-Dominated Carbon Materials as High-Performance Supercapacitors. *ChemSusChem* 2018, *11* (22), 3932–3940. https://doi.org/10.1002/cssc.201801892.
- (6) Gao, Y.; Cui, P.; Liu, J.; Sun, W.; Chen, S.; Chou, S.; Lv, L.-P.; Wang, Y. Fluorine/Nitrogen Co-Doped Porous Carbons Derived from Covalent Triazine Frameworks for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2021, 4 (5), 4519–4529. https://doi.org/10.1021/acsaem.1c00155.
- (7) Gao, Y.; Zhi, C.; Cui, P.; Zhang, K. A. I.; Lv, L.-P.; Wang, Y. Halogen-Functionalized Triazine-Based Organic Frameworks Towards High Performance Supercapacitors. *Chem. Eng. J.* 2020, 400, 125967. https://doi.org/10.1016/j.cej.2020.125967.
- (8) Li, Y.; Zheng, S.; Liu, X.; Li, P.; Sun, L.; Yang, R.; Wang, S.; Wu, Z.-S.; Bao, X.; Deng, W.-Q. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. *Angew. Chem. Int. Ed.* 2018, 57, 7992–7996. https://doi.org/10.1002/anie.201711169.
- (9) Wu, C.; Zhang, H.; Hu, M.; Shan, G.; Gao, J.; Liu, J.; Zhou, X.; Yang, J. In Situ Nitrogen-Doped Covalent Triazine-Based Multiporous Cross-Linking Framework for High-Performance Energy Storage. *Adv. Electron. Mater.* **2020**, *6* (7), 2000253. https://doi.org/10.1002/aelm.202000253.
- (10) Mohamed, M. G.; Sharma, S. U.; Liu, N.-Y.; Mansoure, T. H.; Samy, M. M.; Chaganti, S. V.; Chang, Y.-L.; Lee, J.-T.; Kuo, S.-W. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors. *Int. J. Mol. Sci.* 2022, 23. https://doi.org/10.3390/ijms23063174.
- (11) Vadiyar, M. M.; Liu, X.; Ye, Z. Macromolecular Polyethynylbenzonitrile Precursor-Based Porous Covalent Triazine Frameworks for Superior High-Rate High-Energy Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 45805–45817. https://doi.org/10.1021/acsami.9b17847.
- (12) Mohamed, M. G.; EL-Mahdy, A. F. M.; Takashi, Y.; Kuo, S.-W. Ultrastable Conductive Microporous Covalent Triazine Frameworks Based on Pyrene Moieties Provide High-Performance CO₂ Uptake and Supercapacitance. *New J. Chem.* **2020**, *44*, 8241–8253. https://doi.org/10.1039/D0NJ01292K.
- (13) Hryniewicka, A.; Breczko, J.; Siemiaszko, G.; Papathanassiou, A.; Góra-Marek, K.; Tarach, K. A.; Brzezinski, K.; Ilnicka, A.; Terzyk, A. P.; Markiewicz, K. H.; Echegoyen, L.; Plonska-Brzezinska, M. E. Pyrrolo[3,2-b]Pyrrole-Based Covalent Triazine Framework: Three-Dimensional Organization of Pores Using Nanostructural Spherical Carbon. *Chem RXiv* 2022. https://doi.org/10.26434/chemrxiv-2022h0n31.
- (14) Peng, L.; Guo, Q.; Ai, Z.; Zhao, Y.; Liu, Y.; Wei, D. Nitrogen Doped Carbons Derived From Graphene Aerogel Templated Triazine-Based Conjugated Microporous Polymers for High-Performance Supercapacitors. *Front. Chem.* 2019, 7, 142. https://doi.org/10.3389/fchem.2019.00142.