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1 Absolute irradiances and molar absorptivity

The absolute irradiance of AURA and EPSE Vario, represented by area integral under an 

irradiance curve, were measured using a miniature UV-Vis spectrometer (USB4000; Ocean 

Optics, USA), equipped with a 400 µm optical fiber that was coupled to an opal glass cosine 

corrector (CC3-UV, sensor diameter: 3.9 mm). Prior to any measurements, the 

spectrophotometer setup was calibrated with a deuterium (UV) and halogen (Visible-NIR) 

calibration light source (DH-2000-CAL; Ocean Optics, Florida, USA), as per NIST standards. 

Figure 1b displays emission spectra of AURA and ESPE Vario.
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Figure 1: (a) Molar Absorptivity (Right axis) of CQ in pure methanol (1.11 x 10-4 mol/mL), measured using a miniature 

UV-Vis spectrophotometer (USB400). (b) Spectral irradiances of light curing units, used in present study.

2 GPC -  and  of Monomers�̅�𝑛 �̅�𝑤

MW averages of monomers were determined using GPC, which involved molecular size 

separation based on hydrodynamic elution volume. However, since a constant flow rate of 1.0 

mL/min was used, separation of molecules was measured in retention time (minutes) instead. 

Figure 2 and 3 illustrate chromatograms of both monomers. Elution peaks highlighted by green 

gridlines represent the distribution of monomer chain sizes as a function of retention time and 

RI. High MW chains (large coiled-up polymers) eluted first and marked the upper limit, while 

small polymer chains eluted last marking the lower limit.



Figure 2: Chromatogram of PLLA-DM (SP-POL-116). Courtesy of SP (Montpelier, France).

Relative number ( ) and weight ( ), along with polydispersity index (PDI) was �̅�𝑛 �̅�𝑤

generated using the calibration curve. It is worth noting that the narrow peak at about 23 

minutes corresponds to an additive, generally introduced to ensure more uniform flow and/or 

avoid non-size exclusion interactions with the column [99]. Variation in Mn, Mw and PDI 

among three PLLA-DM batches were ± 6.85, 6.60 and 3.63 %, respectively. Equally, variation 

among PCF-DM batches were ± 11.36, 18.60 and 7.23 %, respectively.



Figure 3: Chromatogram of PCF–DM (SP–POL–132). Courtesy of SP (Montpelier, France).

3 Apparent viscosity and flow behaviour

3.1 Methods

Apparent viscosities of unpolymerised neat monomers and their respective formulations were 

determined using Discovery Hybrid Rheometer HR1 (TA instruments, Brusselsesteenweg, 

Belgium). To measure viscosity as a function of strain, a shear rate sweep of 1 to 2000 s-1 was 

performed using a 20 mm cone-on-plate geometry with a cone angle of 2o and truncation 

height/gap (between the cone and a plate) of 53 µm. The geometry setup was calibrated for 

inertial, frictional, and rotational mapping prior to any measurements. Shear rate change and 

data acquisition were acquired algorithmically (Log10) by dispensing 0.10 mL of monomer 

sample between the cone and a plate using a 1 mL syringe.  Plate temperature was adjusted 

accordingly (25 / 37oC), with an initial 60 s ‘temperature soaking time’. Viscosity 

measurements were conducted in triplicates per monomer / formulation and per temperature 

group. Data were analysed using TRIOS software (v5.0.0).



3.2Results

Figure 4 depicts apparent viscosities of monomer formulations, as a function of shear rate (s-1) 

at 25oC (Figure 4a) and 37oC (Figure 4b). Two-way ANOVA analysis revealed significant 

reduction (P < 0.05) in apparent viscosities as a function of shear rate (1/s) and operating 

(environmental) temperature.

At 25oC, the effect of high-speed shearing was more apparent for formulations 

containing higher PLLA-DM content (F4 and F5). Fluid shear thinning (Flow Index, n < 1) 

was significant with greater reduction in apparent viscosities (Post hoc, Bonferroni, P < 0.05), 

when compared with F1–3 formulations which displayed relatively gradual shear thinning 

behaviours.

An increase in temperature (to 37oC) led to significant decline (P < 0.05), with as 

much as 77 and 86 % reduction in apparent viscosities of F4 and F5 formulations when 

compared at 100 shear rate (s-1) under 25oC operating temperature, respectively. Equally, 

formulations with lower PLLA-DM content (F1–F3), apparent viscosities were reduced by 60 

to 70 %, when compared at 100 shear rate (s-1) under 25oC (P < 0.05). It is worth noting that 

the influence of shear rate under 37oC was less noticeable with non-significant (P > 0.05) 

reduction in apparent viscosities at various shear rate steps for each formulation.
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F1: PLLA-DM / PCF-DM (50 / 50) F2: PLLA-DM / PCF-DM (60 / 40)

F3: PLLA-DM / PCF-DM (70 / 30) F4: PLLA-DM / PCF-DM (80 / 20)

F5: PLLA-DM / PCF-DM (90 / 10) BT2: BisGMA / TEGDMA (80 / 20)

Figure 4: Apparent viscosities of unpolymerised formulations under a shear rate sweep of 1-2000 (s-1) at 25 (a) and 37oC 

(b) operating temperatures with a temperature soaking time of 60 s.

3.3Discussion

Generally, monomer formulations exhibited shear thinning behaviour which was more apparent 

for formulations containing higher PLLA-DM content. Propensity towards applied shear 

stresses might be attributed to higher intermolecular forces and entanglement of chains than 

PCF-DM. This may explain somewhat the ‘sticky wax’ nature of neat PLLA-DM as opposed 



to the ‘oily’ texture observed for neat PCF-DM. The effect of temperature on apparent 

viscosities of formulations was more influential than shearing. Increased temperature may have 

led polymer chains to gain enough energy to overcome intermolecular interactions and disrupt 

entanglement from the bulk structure [100]. As a result, resistance to flow (viscosity) decreased 

and polymer networks began to flow more readily. 

A significant reduction in the apparent viscosity of F5 at relatively low shear rates 

under 25oC might be attributed to the ‘Weissenburg effect’, caused by normal stress forces 

generated during shear deformation. A phenomenon commonly occurs in paints and polymer 

solutions involving an elastic fluid mixed in a highly viscous solvent. PCF-DM chains may 

have experienced relatively larger elastic deformation and stretching than PLLA-DM under the 

same shear stresses away from the centre. In cone-on-plate geometry, this can create outward 

normal forces which in turn affect polymer contact with cone and the plate [100-102]. 
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