Supporting Information to

Soft-templated, Mesoporous Co_3O_4 Thin Films for Electrocatalysis of the Oxygen Evolution Reaction

Qingyang Wu⁺, Maximilian Mellin⁺, Stefan Lauterbach[‡], Chuanmu Tian⁺, Christian Dietz§, Jan P. Hofmann⁺, and Marcus Einert^{+*}

⁺Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany;

‡Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287 Darmstadt, Germany

§Institute of Material Science, Physics of Surfaces, Technical University of Darmstadt, Peter-Gruenberg-Strasse 2, 64287 Darmstadt, Germany

Corresponding Author

*E-mail: Dr. M. Einert: <u>meinert@surface.tu-darmstadt.de</u> Phone: +49 6151 16-20770

Figure S1. Histograms B1 and B2 of pore diameters in y- and x-direction, respectively, derived from SEM analysis A1 and A2 with Weibull distribution lines determined for a meso-Co₃O₄ thin film.

Figure S2. SEM images of the meso-Co₃O₄ thin films annealed at A 1-2) 400 °C, B 1-2) 500 °C, and C 1-2) 600 °C for 30 min in air measured at distinct magnifications.

Figure S3. AFM analysis of the surface of the meso-Co₃O₄ thin film sample prepared at 300 °C detected in A) topographic and B) phase-mode including a color code visualizing the height difference and the phase shift of the cantilever, respectively.

Figure S4. Determination of the film thickness of meso-Co₃O₄ thin films prepared via dip-coating on a silicon substrate by profilometry.

Figure S5. A) Bright-field TEM with inset showing SAED patterns from the bulk area, which were indexed in agreement with the cubic spinel phase. B) HR-TEM image of meso-Co₃O₄ demonstrating mesopores and agglomerated Co₃O₄ nanoparticles.

Figure S6. Raman spectrum of a pristine silicon substrate.

Figure S7. A) XPS survey spectrum and B) C 1s spectrum of meso-Co₃O₄ at 300 °C calcined for 30 min.

Figure S8.A) Absorbance spectra for the meso- Co_3O_4 thin film prepared at 300 °C and calcined for 30 min and B) the corresponding Tauc plots for a direct optical transition.

Figure S9. Evaluation of the A) valence band maximum by graphical linear fitting of the data for binding energies between 0 eV and 1 eV, and B) the secondary cutoff region of the XPS spectrum of meso-Co₃O₄, which was collected with a photoelectron take-off angle of 90° and with a -6 V bias applied to the sample.

Figure S10. Scan rate-dependent cyclic voltammetry curves recorded for A) meso- and B) dense Co₃O₄ thin films at distinct scan rates ranging from 20 mV/s to 200 mV/s.

Figure S11. A SEM image of the meso-Co₃O₄ thin film deposited on an FTO substrate and after electrochemical analysis (which was CV, LSV, DCV, and EIS, see experimental section of the manuscript).

Catalyst	Synthesis method	Electrolyte	Substrate	Over- potential (η) at 10 mA/cm ² (mV)	Onset potential (V vs. RHE)	Tafel slope (mV/ dec)	Refer- ence
Co₃O₄ nanosheets/nano particles/ nanospheres	Hydrothermal	1 M KOH	glassy carbon	342/ 350/ 448	1.52/ 1.53/ 1.57	80/ 84/ 99	1
Mesoporous Co₃O₄	Hard templating from KIT-6 mesoporous silica aging at 35 °C and 100 °C	1 M KOH	glassy carbon	411 (at 35 mA) 426 (100 mA)	1.45 (35) 1.48 (100)	60-70	2
Mesoporous Co₃O₄ nanoflakes	Microwave- assisted hydrothermal and low- temperature conversion	1 M KOH	glass carbon	380	1.45	48	3
Sub-5 nm Co₃O₄ nanoparticles	Pulsed laser fragmentation in liquid (PLFL)	1 M KOH	Glass carbon	400	1.55	52	4
Co₃O₄ Nanowires	Thermal annealing of CoCH nanowires	1 M KOH	Carbon fiber paper	~330	1.5	62	5
Cubic Co ₃ O ₄ nanoparticles	Electrodepositio n	1 М КОН	Ni foam	328 - 382	-	-	6
Co₃O₄ nanocrystals	Thermal Decomposition	1 M KOH	Carbon fiber papers	320	1.52	101	7
Co₃O₄ nanofibers	electrospinning	1 M KOH	Fluorine doped tin oxide (FTO)	293	1.42	60.5	8
Two dimensional (2D) porous Co₃O₄ nanosheets	Graphene oxide templating	1 M KOH	Mixtures of active material, carbon black, and sodium alginate	368	1.48	59	9
Co₃O₄ nanoflowers	Hydrothermal	1 М КОН	Carbon cloth	297	~1.38	79.1	10
Mesoporous Co₃O₄	Sol-gel	0.1 М КОН	Pyrolytic graphite (PG) carbon	~390	1.55	74.3	11
Co ₃ O ₄ catalyst	Sol-gel	1 M KOH	Pyrex glass	~450	~1.48	-	12
Mesoporous Co ₃ O ₄ thin films	Sol-gel, dip- coating	1 M KOH	FTO	335	1.5	59	This work

Table S1. OER performances for nanostructured cobalt oxides investigated in alkaline solutions.

References

1	S. Liu, R. Zhang, W. Lv, F. Kong and W. Wang, Int. J. Electrochem. Sci., 2018, 3843–3854.
2	Y. J. Sa, K. Kwon, J. Y. Cheon, F. Kleitz and S. H. Joo, <i>J. Mater. Chem. A</i> , 2013, 1 , 9992.
3	S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei and G. Wang, <i>ACS Appl. Mater. Interfaces</i> , 2015, 7 , 3306–3313.
4	M. Yu, F. Waag, C. K. Chan, C. Weidenthaler, S. Barcikowski and H. Tüysüz, <i>ChemSusChem</i> , 2020, 13 , 520–528.
5	H. Xia, Z. Huang, C. Lv and C. Zhang, ACS Catal., 2017, 7, 8205–8213.
6	A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell and T. D. Tilley, <i>J. Phys. Chem. C</i> , 2009, 113 , 15068–15072.
7	S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, <i>Chem. Commun.</i> , 2015, 51 , 8066–8069.
8	A. Aljabour, ChemistrySelect, 2020, 5, 7482–7487.
9	Z. Li, XY. Yu and U. Paik, <i>J. Power Sources</i> , 2016, 310 , 41–46.
10	J. Du, C. Li and Q. Tang, Electrochimica Acta, 2020, 331 , 135456.
11	W. Song, Z. Ren, SY. Chen, Y. Meng, S. Biswas, P. Nandi, H. A. Elsen, PX. Gao and S. L. Suib, ACS Appl. Mater. Interfaces, 2016, 8 , 20802–20813.
12	M. El Baydi, G. Poillerat, JL. Rehspringer, J. L. Gautier, JF. Koenig and P. Chartier, <i>J. Solid State Chem.</i> , 1994, 109 , 281–288.