Supplementary Information

The emergence of a robust lithium gallium oxide surface layer on galliumdoped LiNiO² cathodes enables extended cycling stability

Mritunjay Mishra^b, Koffi P.C. Yao^{a*}

^aDepartment of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States of America.

^bDepartment of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States of America.

Corresponding author email: claver@udel.edu

Literature survey of doped LiNiO2 cycling

Table S1. Data table used for obtaining Fig.1 in the manuscript.

Table S2. Variance of the capacity retention value obtained from publications shown in **Fig. 1** in introduction.

Energy Dispersive X-Ray Spectroscopy (EDS) measurements and analyses

Fig. S1. (a-e) EDS spectrum of 0%-6% Ga-LiNiO₂ showing elemental composition obtained from one of the locations shown in **Table S3**.

Table S3. EDS data obtained from three distinct sites of 1% to 6% Ga-LiNiO₂.

Fig. S2. Ni2p XPS of a) 0% Ga, b) 2% Ga, and c) 5% Ga-LiNiO₂. d) Ga2p XPS of 2% and 5%Ga-LiNiO₂. e) XPS spectra of Ga2p_{3/2} of 5% Ga-LiNiO2.

XPS measurements were conducted on undoped and Ga-doped LiNiO² as shown in **Fig. S2a-c**. 2p orbital of Ni in 0%, 2%, and 5% Ga-LiNiO₂ yield a doublet (i.e., 2p_{3/2} and 2p_{1/2}) due to the spin-orbit coupling with the two possible states having different binding energies. Each energy state consists of Ni³⁺ and Ni²⁺ species along with their satellite peaks. The obtained XPS spectra were deconvoluted based on the previously reported XPS for nickel-rich oxide (NMC) cathodes. 17,18 The deconvoluted XPS spectra

confirmed the presence of Ni³⁺ and Ni²⁺ in all three LiNiO₂ cathodes and their peak positions and area are tabulated in Table S4. In agreement with the observations of Wu et al.¹⁹ on LiNi_{0.8}Co_{0.1}Mn_{0.1-x}Ga_xO₂, a systematic increase in the Ni³⁺/Ni²⁺ ratio upon higher Ga doping is found, pointing to decreasing cation mixing.

The Ga 2p XPS spectra shown in **Fig. S2d** were acquired to characterize the surface phases present on 2% and 5% Ga doped LiNiO2. No Ga signals were observed on the surface of 2% Ga due to bulk doping, however, intense Ga 2p peaks were seen for 5% Ga. To confirm the emergence of the LiGaO₂ phase on the surface of 5% Ga-LiNiO₂, XPS spectra were deconvoluted and shown in Fig. **S2e**. Deconvolution of the XPS spectra revealed two discernible peaks centered at 1117.13 eV and 1118.09 eV, respectively. The predominant peak observed at a lower binding energy of 1117.13 eV is attributed to the LiGaO₂ phase.²⁰ The minor peak appearing at a relatively higher binding energy of 1118.09 eV is associated with the Ga₂O₃ phase.^{20,21} This observation corroborates the dominance of the LiGaO₂ phase as a prominent constituent at the surface of the 5% Ga-LiNiO₂ material, as confirmed by the XRD, EDS and HRTEM analysis.

Table S4. Peak position and area ratio from XPS spectra deconvolution of 0%, 2%, and 5% Ga-LiNiO₂.

X-ray diffraction (XRD) patterns of as-synthesized 0%, 1%, 2%, 4%, 5% and 6% Ga doped LiNiO²

Fig. S3. XRD pattern of 0%-6% Ga-doped LiNiO₂ pristine powder electrodes.

Close inspection of the X-ray diffraction (XRD) patterns of as-synthesized undoped and Ga doped LiNiO²

Fig. S4. (a) Magnified XRD at the (003) plane peak of 0%, 2%, and 5% Ga-LiNiO₂ showing shift and broadening of the plane with increasing Ga content. (b) Magnification of the 20^o-35^o range for comparison against Li₂CO₃ and Li₅GaO₄ reference PDFs.

Table S5. 2θ and FWHM value of (003) reflection corresponding to 0%, 2%, and 5% Gallium doped LiNiO₂.

	2θ of (003)	FWHM	
0% Ga-LiNiO ₂	18.8060 ± 0.0016	0.16844 ± 0.00383	
2% Ga-LiNiO ₂	18.8027 ± 0.0016	0.15270 ± 0.00359	
5% Ga-LiNiO ₂	18.7888 ± 0.0043	0.20316 ± 0.01041	

Rietveld refinement analysis of 0%, 2% and 5% Ga-doped LiNiO²

In the structural model, we performed refinement on several key parameters, including the unit cell parameters, site occupancy, oxygen z-coordinate, and the isotropy U_{iso} parameters for oxygen (O), lithium (Li), gallium (Ga), and nickel (Ni) atoms. The following constraints were used:

- Similar U_{iso} parameters for atoms occupying the same Wycoff site.
- The total occupancy of the 3a and 3b sites in a given $R\overline{3}m$ phase adds to 1.
- The Ga content must be reasonably near the values targeted and measured by Energy dispersive X-ray spectroscopy (EDS).

It should be noted that Ga was investigated at several sites (i.e., 3a, 3a+3b, and 3b) and the best convergence was selected. At convergence, Ga appears to prefer the 3a sites within LiNiO₂. Similar observations were made by Kitsche et al.¹² The possibility of Ga occupying Ni site has not been excluded, however.

Crystallographic coordinates corresponding to Wycoff sites are as follows:

3a: (0, 0, 0), (1/3, 2/3, 2/3), (2/3, 1/3, 1/3) 3b: (0, 0, 1/2), (1/3, 2/3, 1/6), (2/3, 1/3, 5/6)

6c: (0, 0, ±z), (1/3, 2/3, 2/3±z), (2/3, 1/3, 1/3±z)

Table S6. Refined parameters of pristine LiNiO₂.

 $R_{wp} = 7.4\%$; $R_p = 5.32\%$; cation mixing = 3.6%

Table S7. Refined parameters of 2% Ga doped LiNiO₂.

 $R_{wp} = 7.12\%; R_p = 5.57\%$

Table S8. Refined parameters of 5% Ga doped LiNiO₂.

 $R_{wp} = 8.47\%; R_p = 5.86\%$

EDS line scan simulation assuming a core-shell particle configuration

The pseudocode for computing signal expectation based on a core-shell particle model is shown below. The beam penetration at position *x* in the Ga-rich and Ni-rich domains is a proxy for the signal strength from each element.

Function <code>EDS_signal_estimate(</code> R_o **,** $\ R_i$ **,** $\ NominalPentration$ **,** \pmb{x} **):**

x is referenced from the particle center (0, 0) if $R_o < R_i$: raise Exception

OuterSliceDepth = $2 * (R_o^2 - x^2)^{1/2}$ *if* $(R_o > |x|)$ *else* 0 *InnerSliceDepth* = 2 $*(R_i^2 - x^2)^{1/2}$ *if* $(R_i > |x|)$ *else* 0 $Problemgth = min(NominalPentration, OuterSliceDepth)$ *ShellLength* = (OuterSliceDepth – InnerSliceDepth)/2 $SurfaceToFarCorelength = ShellLength + InnerSliceDepth$ # Signals calculation if $InnerSliceDepth \neq 0$: if *Probe Length < SurfaceToFarCoreLength*: $Ga = min(Problem gth, ShellLength)$ $Ni = max[(Problem gth - Ga), 0]$ else: $Ga = Problemath - InnerSliceDepth$

 $Ni = Problemgth - Ga$

else:

 $Ga = Problemgth$ $Ni = 0$

Fig. S6. Line scan EDS profile of 2% Ga-LiNiO₂. The image inset between is the actual SEM image during the line scan.

Estimation of theoretical specific capacities

Table S9. Capacity calculation for 0%, 2%, and 5% Ga-LiNiO² electrodes.

cycling 200 2400 Pristine state After 100 cycles (a) (b) 150 1600 $= 105$ $R_{\text{ct}} = 2150$ $Z^{\prime\prime}$ (ohm) $-2"$ (ohm) $= 100$ $R_{\text{ct}} = 1600$ 100 $= 130$ 0% Ga-LiNiO₂ $R_{\text{ct}} = 422$ 2% Ga-LiNiO₂
5% Ga-LiNiO₂ 0% Ga-LiNiO₂ 800 2% Ga-LiNiO₂
5% Ga-LiNiO₂ 50 $\overline{0}$ $\mathbf 0$ 150 $\overline{0}$ 50 100 200 0 800 1600 2400 Z' (ohm) Z' (ohm)

Electrochemical impedance spectroscopy (EIS) of electrodes in half-cells before and after

Fig. S7. EIS Nyquist plot of (a) as-assembled and (b) cycled 0%, 2%, and 5% Ga-LiNiO₂ half-cells. The estimated charge transfer resistances R_{ct} are shown in the figures.

The impedance spectra (EIS) of as-assembled half-cells reveal a slightly higher charge transfer resistance (R_{ct}) in the 5% Ga-doped cathode (Fig. S7a) attributable to the presence of surface α-LiGaO₂. However, after 100 cycles, the R_{ct} for the 0% (~ 2150 Ω) and solution-doped 2% (~ 1600 Ω) Ga-LiNiO² cells increased drastically compared to their 5% Ga-doped counterpart (**Fig. S7b**). This increased resistance is likely from surface reconstruction and the particle pulverization providing higher surface area for excessive growth of resistive cathode-electrolyte interphases (CEI). Conversely, the increase in R_{ct} for 5% Ga-LiNiO₂ at cycle 100 is markedly lower (~ 422 Ω), underscoring the protective effect of the LiGaO₂ coating in mitigating surface degradation and particle breakage responsible for growing impedance.

Differential capacity analysis (dQ/dV) at C/10

Fig. S8. dQ/dV at C/10 on the 1st (a) and 2nd (b) cycles of 0%, 2%, and 5% Ga-LiNiO₂.

Coulombic Efficiency (CE) profile

Fig. S9. Coulombic Efficiency profile of 0%, 2%, and 5% Ga-LiNiO₂.

Scanning electron microscopy (SEM) imaging of electrodes post 100 cycles

Fig. S10. SEM images of 0% Ga-LiNiO₂ electrodes obtained after 100 cycles at different locations showing numerous secondary particles are pulverized to primary nanoparticles.

Fig. S11. SEM images of 2% Ga-LiNiO₂ electrodes obtained after 100 cycles at different locations also showing numerous secondary particles are pulverized to primary nanoparticles.

Fig. S12. SEM images of 5% Ga-LiNiO₂ electrodes obtained after 100 cycles at different locations showing minimal pulverization of secondary particles.

HRTEM image of 5% Ga-LiNiO² electrodes after 100 cycles

Fig. S13. a) HRTEM of 5% Ga-LiNiO₂ obtained after 100 cycles demonstrating $R\overline{3}m$ and $Fm\overline{3}m$ distribution at nanoscale near the surface. Region I correspond to $R\overline{3}m$ symmetry whereas Region II is the $Fm\overline{3}m$ rock-salt phase from reconstruction. b) d-spacing calculations of region I and II. FFT and corresponding IFFT images of one of the spots are shown inset for clarity.

REFERENCES

- H. H. Ryu, G. T. Park, C. S. Yoon and Y. K. Sun, *J. Mater. Chem. A*, 2019, **7**, 18580–18588.
- X.-Z. Kong, D.-L. Li, K. Lahtinen, T. Kallio and X.-Q. Ren, *J. Electrochem. Soc.*, 2020, **167**, 140545.
- C. S. Yoon, U. H. Kim, G. T. Park, S. J. Kim, K. H. Kim, J. Kim and Y. K. Sun, *ACS Energy Lett.*, 2018, **3**, 1634–1639.
- J. Li, Y. Zhu, B. Pang and P. Gao, *J. Mater. Sci.*, 2022, **57**, 17722–17734.
- C. S. Yoon, M. J. Choi, D. W. Jun, Q. Zhang, P. Kaghazchi, K. H. Kim and Y. K. Sun, *Chem. Mater.*, 2018, **30**, 1808–1814.
- W. M. Seong and A. Manthiram, *ACS Appl. Mater. Interfaces*, 2020, **12**, 43653–43664.
- G.-X. Huang, R.-H. Wang, X.-Y. Lv, J. Su, Y.-F. Long, Z.-Z. Qin and Y.-X. Wen, *J. Electrochem. Soc.*, 2022, **169**, 040533.
- H. R. Park, *Journal of Industrial and Engineering Chemistry*, 2010, **16**, 698–702.
- J. Cho, T. J. Kim, Y. J. Kim and B. Park, *Electrochem. Solid-State Lett., 2001, 4, A159*.
- Y. Li, S. Deng, Y. Chen, J. Gao, J. Zhu, L. Xue, T. Lei, G. Cao, J. Guo and S. Wang, *Electrochim. Acta*, 2019, **300**, 26–35.
- Y. Nishida, K. Nakane and T. Satoh, *J. Power Sources*, 1997, **68**, 561-564.
- D. Kitsche, S. Schweidler, A. Mazilkin, H. Geßwein, F. Fauth, E. Suard, P. Hartmann, T. Brezesinski, J. Janek and M. Bianchini, *Mater. Adv.*, 2020, **1**, 639–647.
- X. Kong, D. Li, E. O. Fedorovskaya, T. Kallio and X. Ren, *Int. J. Energy Res.* 2021, **45**, 10489–10499.
- K. Y. Park, Y. Zhu, C. G. Torres-Castanedo, H. J. Jung, N. S. Luu, O. Kahvecioglu, Y. Yoo, J. W. T. Seo, J. R. Downing, H. D. Lim, M. J. Bedzyk, C. Wolverton and M. C. Hersam, *Adv. Mater.* 2022, **34**, 2106402.
- H. Cao, F. Du, J. Adkins, Q. Zhou, H. Dai, P. Sun, D. Hu and J. Zheng, *Ceram. Int.*, 2020, **46**, 20050–20060.
- S. H. Park, K. S. Park, Y. Kook Sun, K. S. Nahm, Y. S. Lee and M. Yoshio, *Electrochim. Acta*, 2001, **46**, 1215-1222.
- 17 Yang G, Qin X, Wang B, Cai F, Gao J. *Journal of Materials Research*. 2020; **35**(1): 51-57.
- 18 T. Kim, L. K. Ono, Y. Qi, *J. Mater. Chem. A*, 2023, **11**, 221-231.
- 19 L. Wu, X. Tang, X. Chen, Z. Rong, W. Dang, Y. Wang, X. Li, L. Huang, Y. Zhang, *j. Power Sources, 2020, 445, 227337*.
- 20 J. T. Wolan and G. B. Hoflund, *J. Vac. Sci. Technol. A*, 1998, **16**, 3414.
- 21 https://www.thermofisher.com/us/en/home/materials-science/learning-center/periodic-table/other metal/gallium.html.

Supplementary XRD refinement information clipped from the GSAS-II software. The tables below show improper refinement convergence under various conditions considered. These analyses exclude certain occupancy possibilities.

			Name Type refine	x	v	z	frac	site sym mult $ I/A $		Uiso
$\bf{0}$	Ni ₂	$Ni+3$ FU		0.00000	0.00000	0.50000		$1.0119 - 3m(100)$ 3		0.02267
	Ga2	$Ga+3$ FU		0.00000	0.00000	0.00000		$-0.0228 - 3m(100)$ 3		-0.01034
2	Li2	$Li+1$ FU		0.00000	0.00000	0.00000		$1.3487 - 3m(100)$ 3		-0.01034
3	01	$O - 2$		0.00000	0.00000	0.23924		$1,0000$ 3m (100)	6	0.02418

(a) Refining site occupancy and Uiso value of 2% Ga-LiNiO₂ when assuming Ga occupies only 3a site.

(b) Refining site occupancy and Uiso value of 2% Ga-LiNiO₂ when assuming Ga occupies only 3b site.

