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S1 Tauc and Urbach Methods

The optical bandgaps, encompassing both direct and indirect types, were determined using

the Tauc method based on the following equation (see Figure S1 for detailed fittings):1

(α · hν)1/γ = B (hν − Egap) . (S1)

Here, h is the Planck constant, ν is the photon’s frequency, Egap the bandgap energy, and B

is a constant. The γ depends on the nature of the electron transition, being 1/2 for direct

and 2 for indirect transition bandgaps. Additionally, the absorption coefficient spectra of the

SnO film, with thickness d, were determined using the Beer-Lambert relation: α = −1
d
ln(T ),

where T is the transmittance.

Additionally, utilizing the same α, information about defects in the film, reflected in the

Urbach energy (EU), is obtained from the exponential relationship as follows:

α(hν) = α0 exp

(
hν − Egap

EU

)
, (S2)

where α0 is a constant.

S1.1 Determining the Fitting Range for Urbach Energy Calculation

Previous researches2–5 have demonstrated that the efficacy of exponential function fitting is

constrained by the selection of a limited fitting range. To guide the selection of the fitting

range, one can employ the Tauc model,6 which delineates three distinct energy regions in

a semilogarithmic plot of optical absorption, as illustrated in Figure S2. The lowest energy

region, labeled ’A’, is characterized by an absorption coefficient linked to the excitation of

localized electrons from deep levels to the conduction band. In contrast, the high energy

region ’C’ pertains to the transition of bound valence electrons into a free carrier state in

the conduction band. The intermediate region ‘B’ encompasses the indirect bandgap as well
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Figure S1: (a) Transmittance spectra of the SnO films with variations in argon (Ar) flow
rate. Fitting procedures for (b) indirect and (c) direct bandgap extractions according to
the Tauc method, as stated in Eq. S1, for γ equal to 2 and 1/2, respectively. (d) Natural
logarithmic plotting for extracting the Urbach energy according to the Urbach rule, as given
in Eq. S2.

as the exponential absorption edge, known as the Urbach regime.

To more precisely identify the Urbach regime, we transform the exponential function into

a linear one by applying the natural logarithm to the absorbance (α) and photon energy (E)
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Figure S2: Semilogarithmic representation of absorption coefficient against photon energy.
This plot is designed to illustrate the fitting regime, clearly delineating the three distinct
regions in Tauc’s framework for amorphous semiconductors. It highlights the low-energy re-
gion ’A’, the high-energy region ’C’, and the exponential absorption edge in the intermediate
region ’B’ (Urbach regime).

data, as per the following relation:

α(E) = α0 exp

(
E − Egap

EU

)
→ ln

α

α0

=
1

EU

E − Egap

EU

E = EU ln
α

α0

+
Egap

EU

(S3)

Subsequently, we identify the regime within region B that exhibits a linear trend. We

then conduct linear regression (y = mx+ c) over a carefully chosen range within this linear

regime. This regression provides the slope (m), which is crucial for calculating Urbach energy

(EU = 1/m).

S1.2 Error Analysis

To evaluate precision, we conduct an error analysis, which includes calculating the standard

deviation of the residuals. This step assesses the fit’s accuracy and gauges the deviation of
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observed data from our regression model. Error propagation due to multiplication or division

is estimated through the following relation:

σx

x
=

√(σa

a

)2

+
(σb

b

)2

+
(σc

c

)2

(S4)

This formula allows us to calculate the standard deviation for parameters derived from the

slope and/or y-intercept in the linear fitting. For instance, considering Edirect
gap = c1/m1 from

the Tauc fitting method, the error can be estimated as:

∆Edirect
gap

Edirect
gap

=

√(
∆m1

m1

)2

+

(
∆c1
c1

)2

(S5)

Similarly, for the Urbach energy, since it is calculated from EU = 1/m2 and providing a

quantifiable measure of uncertainty of the slope from the linear fitting, we can then compute

the standard error of the Urbach energy: ∆EU = ∆m2

m2
EU

S1.3 Tauc-Urbach Extractor User Interface

We utilized a home-built Python code for the fitting process to extract Urbach energy. The

NumPy polyfit function is employed for linear fitting of the data, which includes obtaining

the standard deviation of the fit. This regression yields the slope (m2), crucial for calculating

the Urbach energy (EU = 1/m2).

A user-friendly interface has been developed using Python and QT-Designer. It is acces-

sible via the GitHub link provided below:

https://github.com/moch-januar/Tauc-Urbach_Extractor

This interface encapsulates the algorithm for Urbach energy extraction as well as the Tauc

methods for bandgap determination. It enables users not only to easily reproduce our results

but also to broadly apply the concepts, especially in extracting Urbach energy and the band

gap of materials through transmittance measurements using UV-visible spectroscopy.
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S2 Refractive Index Calculations

S2.1 Obtaining Complex Refractive Index from UV-visible Spec-

trum

The analytical method proposed by Nichelatti7 offers a formula for determining the com-

plex refractive index, ñ = n + iκ, of a slab dielectric layer based on its transmittance and

reflectance data.

n =
1 +RF

1−RF

+

√
4RF

(1−RF)
2 − κ2 ,

κ =
λ

4πd
ln

(
RFT

R−RF

)
.

(S6)

Here, the reflectance coefficient, RF, is deduced from the measured reflectance (R) and

transmittance (T ) in a UV-visible setup, as expressed by the following equation:

RF =
2 + T 2 − (1−R)2 −

√
[2 + T 2 − (1−R)2]2 − 4R(2−R)

2(2−R)
. (S7)

S2.2 Interpolation of the Refractive Index Database for Metallic-Sn

To establish a reference point for the refractive index value of the β-Sn metallic phase,

we performed interpolation using literature databases. Figure S3 displays refractive index

data from the works of Palik8 and Golopashkin-Motulevich.9 Each database provides values

for both shorter and longer wavelengths relative to the visible light spectrum. However,

recognizing the lack of comprehensive data in the visible light regime in these sources, we

conducted cubic b-spline interpolation of both databases. This interpolation process led us

to estimate the refractive index of β-Sn to be approximately 1.48 at 550 nm, the wavelength

at which we evaluated the refractive index for our SnO samples.
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Figure S3: Refractive index databases for metallic Sn with cubic b-spline interpolation for
the visible light regime.

S3 X-ray Photoelectron Spectroscopy (XPS) Analysis

In this section, we present the XPS survey scan and binding energy calibration using gold

(Au) 4f and carbon (C) 1s spectra. We also detail the spectral deconvolution of the sample

prior to argon (Ar) sputtering, as well as the comparison of elemental atomic percentages in

the samples before and after Ar sputtering.

S3.1 Elemental Atomic Concentrations in the SnO Films

The survey scan, as given in Figure S4, reveals the presence of four elemental atoms in the

samples: Sn (Tin), O (Oxygen), Au (Gold), and C (Carbon). We analyzed these elements

under varying conditions, including depth profiling before and after 1 kV Ar sputtering for

180 s. The atomic concentrations are presented in the following tables:
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Figure S4: X-ray photoelectron spectroscopy (XPS) survey scan showing the composition of
SnO films with variations in argon (Ar) flow rate.

Table S1: Elemental Atomic Concentration (Without Ar Sputtering)

Ar flow rate [sccm] Sn 3d [%] O 1s [%] C 1s [%] Au 4f [%]

5.6 7.40 30.21 45.01 17.38

5.8 8.11 30.29 43.73 17.87

6.0 9.30 30.57 41.88 18.25

6.2 11.78 29.14 41.04 18.04

Table S2: Relative Concentration between Sn and O Atoms (Without Ar Sputtering)

Ar flow rate [sccm] Sn 3d [%] O 1s [%] O/Sn

5.6 7.40 30.21 4.08

5.8 8.11 30.29 3.74

6.0 9.30 30.57 3.29

6.2 11.78 29.14 2.47
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Figure S5: (a) Au 4f spectral matching for XPS binding energy calibrations of SnO films
with variations in Ar flow rate. (b) Confirmation of the calibrated binding energy using the
C 1s spectra. (c) Binding energy correction for each sample, accounting for varying depth
profiles based on different Ar sputtering times using a 1 kV sputter energy.

Table S3: Elemental Atomic Concentration (1 kV Ar Sputtering for 180 s)

Ar flow rate [sccm] Sn 3d [%] O 1s [%] C 1s [%] Au 4f [%]

5.6 24.93 42.40 0 32.67

5.8 26.68 43.66 0 29.66

6.0 25.74 41.89 0 32.37

6.2 26.77 42.16 0 31.07
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Table S4: Relative Concentration between Sn and O Atoms (1 kV Ar Sputtering for 180 s)

Ar flow rate [sccm] Sn 3d [%] O 1s [%] O/Sn

5.6 37.03 62.97 1.70

5.8 37.93 62.07 1.64

6.0 38.06 61.94 1.63

6.2 38.84 61.16 1.58

S3.2 Interpreting Higher Binding Energy Peaks in O 1s XPS Spec-

tra

As illustrated in Figure S6(b) and Figure 4(b) (main text), the O 1s XPS analysis of the SnO

film fabricated at room temperature shows peaks at 532.55 eV, 531.7 eV, 530.4 eV, and 529.9

eV. The latter two peaks can confidently be attributed to lattice oxygen bound to tetravalent

tin (O−Sn4+) and divalent tin (O−Sn2+), respectively, as supported by various literature

sources.10,11 However, the assignment of the first two peaks might vary depending on the

film preparation conditions. For our film, we have assigned the 532.55 eV peak to adsorbed

oxygen or −OH groups from the environment. While some studies assign the peak at 531.7

eV to adsorbed −OH groups, this does not appear to be the case for our film. Unlike the

532.55 eV peak, which disappears, the 531.7 eV peak remains even at deeper depth profiles

after sputtering with Ar at 1 kV for 180 s. Similar observations in the literature suggest that

this peak could be attributed to the formation of O2 molecules within the lattice oxygen.12,13

Furthermore, the assignment of the 531.7 eV peak to unbound oxygen in the films aligns

with our observation of O/Sn atomic concentration ratios exceeding 1.5 in all the IBAD-

fabricated SnO films, indicative of an O-rich state. Given the absence of thermal annealing

during fabrication, there is no additional thermal budget to force excess oxygen to bind to

Sn.
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Figure S6: Deconvoluted high-resolution spectra of (a) Sn 3d and (b) O 1s orbitals at the
film surface, acquired without performing Ar sputtering prior to the XPS signal acquisitions.

S4 Discrepancy in Sn 3d and O 1s XPS Spectra of Nanocrys-

talline SnO Film: A Combined XPS and Raman Spec-

troscopy Analysis

Due to the apparent discrepancy in Sn valence states between parts (a) and (b) in Figure

4, our analysis indicates a complex interaction between Sn oxidation states and the oxy-

gen environment in the SnO films. This complexity is a result of the room-temperature

fabrication process, which produces SnO with a strongly disordered lattice structure, mani-

festing as nanocrystalline, as indicated by Urbach rule analysis, XRD, AFM, and FE-SEM

data. Consequently, the analysis of the XPS data will be less straightforward than that of a

conventional polycrystalline SnO film.

To provide more clarity, Figure S7 presents the XPS and Raman spectra for the sam-

ples processed at 6.2 sccm. This figure also includes the relative areas of the deconvoluted

peaks for the O 1s and the Raman spectra. These figures illustrate the balanced presence
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Figure S7: Combined XPS and Raman Spectroscopy Analysis of SnO Sample Fabricated
with a 6.2 sccm Ar Flow Rate: (a) XPS spectra showcasing the Sn 3d3/2 and O 1s states.
(b) Relative area analysis of the O 1s deconvoluted spectra, illustrating the distribution of
different oxygen states. (c) Raman spectra highlighting the vibrational modes specific to the
SnO sample. (d) Relative area analysis of the deconvoluted spectra for Sn3O4-likeè and SnO
phases, demonstrating the proportions of these phases in the sample.

of O−Sn2+ and O−Sn4+ states, indicative of a 1:1 ratio (see Figure S7(a) and (b)), which

is mirrored in the Raman data. As shown in Figure S7(c) and (d), the total areas of the

Raman peaks near 138 cm−1 and 176 cm−1 (linked to the formation of Sn3O4-like interme-

diate phases14,15) and those near 110 cm−1 and 210 cm−1 (associated with SnO phases16–18)

also display a similar 1:1 ratio. This suggests a coexistence of SnO and Sn3O4-like phases.

Significantly, this finding corroborates our interpretation that the formation of sub-oxides,

along with the SnO phase, accounts for the discrepancies observed in the Sn 3d and O 1s

XPS spectra. Thus, these correlations affirm that the variations in the Sn 3d and O 1s XPS
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spectra are indicative of the formation of sub-oxides, in conjunction with the SnO phase.

This is further underlined by the Raman data, which points to the Sn3O4-like intermediate

phase.
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