Supplementary Information

Mechanochemically-Assisted Synthesis of 3D, 2D and quasi 2D Lead Halide Perovskites for Supercapacitor Application

Apurba Mahapatra,^{a*} Manoranjan Mandal,^b Ayon Das Mahapatra,^c Vishnu Anilkumar,^a Jan

Nawrocki,^a Rohit D. Chavan,^a Pankaj Yadav^{d,*} and Daniel Prochowicz^{a,*}

^a Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.

^b Department of Physics, School of Science, GITAM University, Bengaluru, 561203, India.

^c Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem- 9190401, Israel.

^d Department of Solar Energy, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar-382 007, Gujarat, India.

Corresponding authors: amahapatra@ichf.edu.pl; pankaj.yadav@sse.pdpu.ac.in; dprochowicz@ichf.edu.pl

Figure S1. SEM images of the synthesized (a) BA₂PbBr₄ (2D) and (b) BA₂MAPb₂Br₇ (2D/3D) MSP.

Figure S2. Cyclic-voltammetry (CV) curves of (a) MAPbBr₃ SCP, (b) MAPbBr₃ MSP, (c) BA₂PbBr₄ (2D) MSP, and (d) BA₂MAPb₂Br₇ (quasi-2D) MSP electrode recorded at different scan rates.

Figure S3. Applied potential dependent change in Dunn law coefficient b of MAPbBr₃ SCP and MSP electrodes.

Figure S4. Cyclic stability of MAPbBr₃ SCP and MSP electrode.

Figure S5. Ragone plot of MAPbBr₃ SCP and MSP electrodes.

Figure S6. XRD patterns of the of fresh and aged MAPbBr₃ MSP based electrode stored at ambient conditions.

Figure S7. The temperature-dependent conductivity of MAPbBr₃ SCP and MSP pellets.

Figure S8. Cyclic stability of MAPbBr₃, BA₂PbBr₄, and BA₂MAPb₂Br₇ MSP-based electrodes.

Table S1. Comparison of the electrochemical performances of various LHP based electrodes

 in terms of capacitance and cycling stability.

Materials	Capacitance	Capacitance	Stability	Dof
(LHPs)	from CV	from GCD	Stadinty	Kei.
MAPbBr ₃ single	81.5 mF cm ⁻²	61.2 mF. cm ⁻²	97% after 1500	
crystal	@5 mV/s	@0.3A/g	cycles	1
MAPbBr ₃ thin film	39.8 μF cm ⁻²	-	Degraded after	
	@5 mV/s		few cycles	
MAPbBr ₃ single	58.5 mF cm ⁻²	60 mF. cm ⁻²	98% after 1000	2
crystal	@5 mV/s	$@0.6 \text{ mA cm}^{-2}$	cycles	_
MAPbI ₃ thin film	21.5 μF cm ⁻²	-	92.3% after	3
	@10 mV/s		3000 cycles	
MAPbBr ₃ SCP	75 mF cm ⁻²	50.22 F g ⁻¹	95% after 2000	
	@5 mV/s	@0.2 mA cm ⁻²	cycles	This Work
MAPbBr ₃ MSP	159 mF cm ⁻²	98.38 F g ⁻¹	93% after 2000	
	@5 mV/s	$@0.2 \text{ mA cm}^{-2}$	cycles	
PEA ₂ PbBr ₄ thin film	24.5 mF cm ⁻²	25 mF. cm ⁻²	100% after 1000	2
	@5 mV/s	$@0.6 \text{ mA cm}^{-2}$	cycles	
MA ₂ PbBr ₄ (2D) MSP	209 mF cm ⁻²	mF. cm ⁻² $@0.2$	98% after 2000	
	@5 mV/s	mA cm ⁻²	cycles	This Work
BA ₂ MAPb ₂ Br ₇	205 mF cm ⁻²	mF. cm ⁻² $@0.2$	96% after 2000	
(2D/3D) MSP	@5 mV/s	mA cm ⁻²	cycles	

References

- 1 R. Kumar, P. S. Shukla, G. D. Varma and M. Bag, *Electrochim. Acta*, 2021, **398**, 139344.
- 2 R. Kumar and M. Bag, J. Phys. Chem. C, 2021, 125, 16946–16954.
- L. E. Oloore, M. A. Gondal, A. J. Popoola and I. K. Popoola, *Electrochim. Acta*, 2020, 361, 137082.