Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2023

Insights Into Targeting the SARS-CoV-2: Design, Synthesis, *In Silico* Studies and Antiviral Evaluation of New Dimethylxanthine Derivatives

(Supplementary Materials)

Abdalla R. Mohamed ^{a, *}, Ahmed Mostafa ^b, Mahmoud A. El Hassab ^c, Gomaa M. Hedeab ^{d, e}, Sara H. Mahmoud ^b, Riham F. George ^f, Hanan H. Georgey ^{f, g}, Nagwa M. Abdel Gawad ^f, Mohamed K. El-Ashrey ^{c, f}

^a Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.

^b Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt.

^c Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt.

^d Pharmacology Department and Health Research Unit, Medical College, Jouf University, KSA.

^e Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt.

^f Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.

^g Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, 11786, Cairo, Egypt.

Content

1.	Molecular Docking	1
2.	Density functional theory (DFT) calculations	13
3.	MM-PBSA calculations	15
4.	Hydrogen bond analysis upon time evolution	15
5.	NCI-60 cell lines panel	19
6.	Oral toxicity prediction of compounds 5, 9a and 19	21
7.	Spectral data	27
Rej	ferences	41

1. Molecular Docking

Docking validation of the co-crystalized ligand, in the SARS-CoV-2 M_{pro} (PDB ID: 7AEH) active site

(B)

Figure 1S. (A) 2D interaction diagram showing ligand docking pose interactions with the key amino acids (hot spots) in the M_{pro} active site (Distance in Å). (B) 2D diagram of the docking pose in M_{pro} active site with RMSD of 0.75 Å.

Docking validation of the co-crystalized ligand, in the SARS-CoV-2 RdRp (PDB ID: 7BV2) active site

(B)

Figure 2S. (A) 2D interaction diagram showing ligand docking pose interactions with the key amino acids (hot spots) in the RdRp active site (Distance in Å). (B) 2D diagram of the docking pose in RdRp active site with RMSD of 0.56 Å.

Compound	M _{PRO} binding score (Kcal/mol)	RdRp binding score (Kcal/mol)
3	-15.23	-11.88
5	-15.90	-12.70
9a	-17.52	-13.72
9b	-16.50	-12.53
12a	-15.11	-11.96
12b	-16.01	-12.29
14	-14.90	-10.70
15 a	-14.47	-10.98
15b	-16.43	-11.55
19	-16.57	-13.10

Table 1S. Docking scores of the tested compounds in M_{pro} & RdRp.

Figure 3S. 2D interaction of compound 3 in M_{pro} active site

Figure 48. 2D interaction of compound 9b in M_{pro} active site

Figure 5S. 2D interaction of compound 12a in M_{pro} active site

Figure 6S. 2D interaction of compound 12b in M_{pro} active site

Figure 7S. 2D interaction of compound 14 in M_{pro} active site

Figure 8S. 2D interaction of compound 15a in M_{pro} active site

Figure 9S. 2D interaction of compound 15b in M_{pro} active site

Figure 10S. 2D interaction of compound 3 in RdRp active site

Figure 11S. 2D interaction of compound 9b in RdRp active site

Supplementary Materials

Figure 12S. 2D interaction of compound 12a in RdRp active site

Figure 13S. 2D interaction of compound 12b in RdRp active site

Figure 14S. 2D interaction of compound 14 in RdRp active site

Figure 15S. 2D interaction of compound 15a in RdRp active site

Figure 17S. A legend guide to binding interactions regarding all the performed docking studies.

Supplementary Materials

Figure 18S. 3D presentation of surface and map of SARS-CoV-2 M_{pro} active site (PDB ID: 7AEH) with compound **9a**.

Supplementary Materials

Figure 19S. 3D presentation of surface and map of SARS-CoV-2 RdRp active site (PDB ID: 7BV2) with compound **9a**.

2. Density functional theory (DFT) calculations

According to the performed docking studies, compounds 9a, 19 and 5 were predicted to have interesting binding modes in the active site of SARS-CoV-2 M_{pro} and RdRp enzymes. Quantum chemical computations using the DFT/B3LYP approach with 6-311G++(d,p) basis set were utilized to get insights regarding the energy values of compounds 9a, 19 and 5 (Table 2S) [1]. Figure 20S-A represents the optimized structures along with their HOMO and LUMO values. The DFT calculations revealed favorable energetic parameters for the three compounds, and particularly, compound 9a was comparable with compounds I and II (Figure 20S-B).

(B)

Figure 20S. (A) DFT calculations for compounds 5, 9a and 19. (B) The most stable conformation of Ribavirin I and Favipiravir II according to DFT calculation [2, 3].

Table 2S. The molecular properties of compounds 5, 9a and 19 after DFT calculations

Compound	Energy (a.u.)	Energy solvation (Kj/Mol)	E HOMO (eV)	E LUMO (eV)	Dipole Moment (Debye)	No. of conformers	% Of the most favorable conformer
5	-1985.50614	-143.63	-6.33	-1.66	8.11	1296	99.993
9a	-1946.20887	-125.68	-6.71	-1.38	9.11	216	99.989
19	-1721.30460	-112.69	-5.41	-1.45	8.50	24	99.601

The Spartan '14 program was used to perform the quantum chemistry calculations using the DFT method. Spartan '14 was used to display all of the data files. DFT at $6-311G^{++}(d,p)$ basis set/B3LYP approach was utilized to optimize organic chemical structure of compound **5**, **9a** and **19** [1].

3. MM-PBSA calculations

The total free energy of any of the three mentioned entities (complex, receptor and ligand) were calculated for all MD trajectories from its molecular mechanics potential energy plus the energy of the solvation, using the g_mmpbsa package. The following formula was used.

$$\Delta G_{(Binding)} = G_{(Complex)} - G_{(Receptor)} - G_{(Ligand)}$$

Where $G_{(Complex)}$ is the total free energy of the protein–ligand complex, $G_{(Receptor)}$ and $G_{(Ligand)}$ are the total free energies of the isolated protein and ligand in solvent, respectively. Individual energies along with the values of standard deviations were calculated and then summed together to yield the average total free energy of each component. Finally, to calculate the binding-free energy, the total free energy of the receptor and the ligand were subtracted from the total free energy of the complex [4].

4. Hydrogen bond analysis upon time evolution

For further insights into the binding process between compound **9a** and the active sites of M_{pro} and RdRp enzymes, hydrogen bond interactions during the MDS were analyzed using VMD 1.8.2 program [5]. As **Figure 21S-A** and **B** demonstrate, compound **9a** was able to form multiple hydrogen bond interactions with the M_{pro} and RdRp enzymes, respectively, throughout the entire MDS. Furthermore, the binding interactions between compound **9a** and both of M_{pro} or RdRp induced stable complexes as revealed from **Figure 22S-A** and **B**.

Figure 21S. The hydrogen bond contacts during the entire MDS; (A) compound **9a** with M_{pro}, (B) compound **9a** with RdRp.

Supplementary Materials

Figure 22S. The hydrogen bond contacts during the entire MDS; (A) M_{pro} enzyme (B) RdRp enzyme.

5. NCI-60 cell lines panel

Developmental Therapeutics Program		NSC: D-787131/1	Conc: 1.00E-5 Molar	Test Date: Sep 14, 2015
One Dose Me	an Graph	Experiment ID: 1509OS61 Report Date: Oct 02, 20		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-62 HOP-92 NCI-H226	90.94 93.81 106.97 101.45 96.45 111.30 89.37 109.89 83.88 92.07 105.59			
NCI-H23 NCI-H322M NCI-H460 NCI-H522	93.54 110.95 111.01 95.34		- €	
Color Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Connor	106.55 99.18 98.82 108.91 97.83 99.11 104.39			
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	106.03 113.73 97.34 104.64 85.28 98.43		-	
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 Oversig Concer	95.83 106.62 93.97 113.27 104.84 112.07 112.16 95.71			
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	111.09 115.96 114.56 102.20 104.22 104.17 89.78			
786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	100.18 111.86 103.27 96.06 120.56 100.12 99.65 86.29		-	
PC-3 DU-145 Breast Cancer MCF7 MCF4 ND 234/47CC	86.03 112.00 98.06		- <u>-</u> -	
MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	99.29 98.37 95.55 102.79			
Mean Delta Range	101.74 17.86 36.68			
	150	100 50	0 -50	-100 -150

Figure. 23S. NCI-60 cell line panel of compound 5

Developmental Therapeutics Program		NSC: D-787132/1	Conc: 1.00E-5 Molar	Test Date: Sep 14, 2015	
One Dose Mea	an Graph	Experiment ID: 1509OS61 Report Date: Oct 02, 2015			
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Percent			
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	98.47 101.34 103.36 100.25 101.35 109.51				
Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H23 NCI-H460 NCI-H460 NCI-H522	92.85 109.25 91.87 93.60 104.71 101.75 106.66 106.61 84.61				
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNIS Cancer	106.19 104.52 95.59 110.39 96.93 104.91 102.37				
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	108.33 109.08 98.93 102.20 88.81 98.13		-		
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257	97.80 99.00 94.21 106.48 104.14 110.56 109.16 95.47				
OVAIIan Cancer	105.17 113.27 105.45 100.49 98.96 111.00 91.38				
786-0 A498 ACHN CAKI-1 RXF 393 SM12C TK-10 UO-31 Prostate Cancer	108.33 92.99 109.85 93.09 118.10 107.58 108.11 82.45				
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	84.37 115.51 100.09 100.15 105.38 102.10 92.54 104.79				
Mean Delta Range	101.70 19.25 35.65		+		
	150	100 50	0 -50	-100 -150	

Figure. 24S. NCI-60 cell line panel of compound 9a

6. Oral toxicity prediction of compounds 5, 9a and 19

Compound	LD ₅₀ (mg/kg)	Predicted Toxicity Class ^a	Average similarity (%)	Prediction accuracy (%)
5	300	3	60.56	68.07
9a	598	4	60.75	68.07
19	500	4	47.93	54.26
Remdesivir	1000	4	40.93	54.26
Favipiravir	1717	4	39.16	23.00

Table 3S. In	silico oral	toxicity	prediction	for com	pounds 5,	9a and	d 19
--------------	-------------	----------	------------	---------	-----------	---------------	------

^a Toxicity Class ranging from 1 to 6 according to the Global Harmony System (GHS) [6].

The ProTox web server was used to estimate rodent oral toxicity and indication of possible toxicity targets for compounds **5**, **9a** and **19** as reported previously [6]. As seen in **Table 3S**, the evaluated LD_{50} was ranged from 300 to 598 mg/kg for the predicted compounds. The evaluated molecules were predicted to be in toxicity classes of 3 or 4, and have no toxic fragments. Furthermore, the submitted compounds were found to be not binding to toxic targets, only compound 19 was found to have a probable hepatotoxicity, figures S-S.

Molweight	484.49
Number of hydrogen bond acceptors	30
Number of hydrogen bond donors	2
Number of atoms	54
Number of bonds	57
Number of rotable bonds	8
Molecular refractivity	123.38
Topological Polar Surface Area	171.25
octanol/water partition coefficient(logP)	1.28

21

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Inactive	0.52
Toxicity end points	Carcinogenicity	carcino	Inactive	0.61
Toxicity end points	Immunotoxicity	immuno	Inactive	0.99
Toxicity end points	Mutagenicity	mutagen	Inactive	0.76
Toxicity end points	Cytotoxicity	cyto	Inactive	0.56
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr_ahr	Inactive	0.92
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr_ar	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Aromatase	nr_aromatase	Inactive	0.98
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	0.99
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.93
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.95
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.95
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr_mmp	Inactive	0.84
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.91
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.99

(B)

Figure 258. Physical characters (A) and Toxicity Model Report (B) for compound 5.

Molweight	470.46
Number of hydrogen bond acceptors	28
Number of hydrogen bond donors	2
Number of atoms	51
Number of bonds	54
Number of rotable bonds	7
Molecular refractivity	118.58
Topological Polar Surface Area	171.25
octanol/water partition coefficient(logP)	0.89

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Inactive	0.56
Toxicity end points	Carcinogenicity	carcino	Inactive	0.60
Toxicity end points	Immunotoxicity	immuno	Inactive	0.99
Toxicity end points	Mutagenicity	mutagen	Inactive	0.74
Toxicity end points	Cytotoxicity	cyto	Inactive	0.56
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr_ahr	Inactive	0.92
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr_ar	Inactive	0.98
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Aromatase	nr_aromatase	Inactive	0.98
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	0.99
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.94
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.95
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.95
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr_mmp	Inactive	0.88
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.91
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.99

(B)

Figure 26S. Physical characteristics (A) and Toxicity Model Report (B) for compound 9a

Molweight	404.4
Number of hydrogen bond acceptors	24
Number of hydrogen bond donors	2
Number of atoms	44
Number of bonds	47
Number of rotable bonds	2
Molecular refractivity	104.2
Topological Polar Surface Area	153.83
octanol/water partition coefficient(logP)	1.48

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Active	0.50
Toxicity end points	Carcinogenicity	carcino	Inactive	0.62
Toxicity end points	Immunotoxicity	immuno	Inactive	0.98
Toxicity end points	Mutagenicity	mutagen	Inactive	0.75
Toxicity end points	Cytotoxicity	cyto	Inactive	0.60
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr_ahr	Inactive	0.96
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr_ar	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Aromatase	nr_aromatase	Inactive	0.96
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	1.0
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.96
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.99
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.99
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr_mmp	Inactive	0.86
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.92
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.99

(B)

Figure 278. Physical characteristics (A) and Toxicity Model Report (B) for compound 19

Molweight	602.58
Number of hydrogen bond acceptors	48
Number of hydrogen bond donors	4
Number of atoms	77
Number of bonds	80
Number of rotable bonds	14
Molecular refractivity	150.43
Topological Polar Surface Area	213.36
octanol/water partition coefficient(logP)	3.28

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Inactive	0.56
Toxicity end points	Carcinogenicity	carcino	Inactive	0.55
Toxicity end points	Immunotoxicity	immuno	Inactive	0.90
Toxicity end points	Mutagenicity	mutagen	Inactive	0.62
Toxicity end points	Cytotoxicity	cyto	Inactive	0.55
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr_ahr	Inactive	0.86
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr_ar	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.93
Tox21-Nuclear receptor signalling pathways	Aromatase	nr_aromatase	Inactive	0.90
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.89
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.95
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.93
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.93
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr_mmp	Inactive	0.77
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.81
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.86

(B)

Figure 28S. Physical characteristics (A) and Toxicity Model Report (B) for Remdesivir

Molweight	157.1
Number of hydrogen bond acceptors	8
Number of hydrogen bond donors	2
Number of atoms	15
Number of bonds	15
Number of rotable bonds	1
Molecular refractivity	32.91
Topological Polar Surface Area	88.84
octanol/water partition coefficient(logP)	-0.29

Classification	Target	Shorthand	Prediction	Probability
Organ toxicity	Hepatotoxicity	dili	Inactive	0.66
Toxicity end points	Carcinogenicity	carcino	Active	0.53
Toxicity end points	Immunotoxicity	immuno	Inactive	0.99
Toxicity end points	Mutagenicity	mutagen	Inactive	0.76
Toxicity end points	Cytotoxicity	cyto	Inactive	0.84
Tox21-Nuclear receptor signalling pathways	Aryl hydrocarbon Receptor (AhR)	nr_ahr	Inactive	0.82
Tox21-Nuclear receptor signalling pathways	Androgen Receptor (AR)	nr_ar	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Androgen Receptor Ligand Binding Domain (AR-LBD)	nr_ar_lbd	Inactive	0.99
Tox21-Nuclear receptor signalling pathways	Aromatase	nr_aromatase	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Alpha (ER)	nr_er	Inactive	0.95
Tox21-Nuclear receptor signalling pathways	Estrogen Receptor Ligand Binding Domain (ER-LBD)	nr_er_lbd	Inactive	0.97
Tox21-Nuclear receptor signalling pathways	Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	nr_ppar_gamma	Inactive	0.99
Tox21-Stress response pathways	Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	sr_are	Inactive	0.96
Tox21-Stress response pathways	Heat shock factor response element (HSE)	sr_hse	Inactive	0.96
Tox21-Stress response pathways	Mitochondrial Membrane Potential (MMP)	sr_mmp	Inactive	0.89
Tox21-Stress response pathways	Phosphoprotein (Tumor Supressor) p53	sr_p53	Inactive	0.50
Tox21-Stress response pathways	ATPase family AAA domain-containing protein 5 (ATAD5)	sr_atad5	Inactive	0.58

(B)

Figure 29S. Physical characteristics (A) and Toxicity Model Report (B) for Favipiravir

7. Spectral data

References

[1] C. Legler, N. Brown, R. Dunbar, M. Harness, K. Nguyen, O. Oyewole, W. Collier. Scaled quantum mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model, Spectrochim. Acta - A: Mol. Biomol., 145 (2015) 15-24.

[2] A.M. Dhumad, H.J. Majeed, K. Harismah, H. Zandi. In silico approach on ribavirin inhibitors for COVID-19 main protease, Biointerface Res. Appl. Chem., 11 (2021) 13924-13933.

[3] P. Yadav, M. Rana, P. Chowdhury. DFT and MD simulation investigation of favipiravir as an emerging antiviral option against viral protease (3CLpro) of SARS-CoV-2, J. Mol. Struct., 1246 (2021) 131253.

[4] R. Kumari, R. Kumar, A. Lynn. g_mmpbsa. A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model, 54 (2014) 1951-1962.

[5] W. Humphrey, A. Dalke, K. Schulten. VMD: visual molecular dynamics, J. Mol. Graph., 14 (1996) 33-38.

[6] M.N. Drwal, P. Banerjee, M. Dunkel, M.R. Wettig, R. Preissner. ProTox: a web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Res., 42 (2014) W53-W58.