SUPPORTING INFORMATION

Biological Activity and Structure-Activity Relationship of Dehydrodieugenol B Analogues against Visceral Leishmaniasis

Maiara Amaral, ${ }^{1,2 \ddagger}$ Hannah Asiki, ${ }^{3 \ddagger}$ Claire E. Sear, ${ }^{3}$ Snigdha Singh, ${ }^{3}$ Pauline Pieper, ${ }^{3}$ Marius M. Haugland, ${ }^{3}$ Edward A. Anderson ${ }^{3 *}$ and Andre G. Tempone ${ }^{2 *}$
${ }^{1}$ Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo - 05403-000, Brazil.
${ }^{2}$ Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo -01246-000, Brazil.
${ }^{3}$ Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.

${ }^{\ddagger}$ These authors contributed equally.
*Corresponding authors:
AGT (andre.tempone@ial.sp.gov.br);
EAA (edward.anderson@chem.ox.ac.uk).

Contents

1. In silico ADMET / Physicochemical Analysis... 2
2. General Experimental Considerations ... 2
3. General Synthetic Methods ... 3
4. Synthesis and characterization of compounds .. 4
5. Copies of ${ }^{1} \mathrm{H}$ NMR spectra... 22
6. References.. 32

1. In silico ADMET / Physicochemical Analysis

Analysis of the ADMET and physicochemical properties of compound $\mathbf{2 4}$ was carried out using the ADMETlab 2.0 programme ${ }^{1}$. The output includes a bioavailability radar representing ideal druglikeness (Figure S1).

Figure S1 - Compound $\mathbf{2 4}$ bioavailability radar, obtained using the ADMETlab 2.0 programme. The light orange area represents the ideal drug-likeness values for each property, labelled here clockwise from the top: Size (MW 100 to $600 \mathrm{~g} / \mathrm{mol}$), Number of rigid bonds (0 to 30), Formal charge (-4 to +4), Number of heteroatoms (1 to 15), Number of atoms in the biggest ring (0 to 18), Number of rings (0 to 6), Number of rotatable bonds (0 to 11) , Topological Polar Surface Area (0 to 140), Number of H bond donors (0 to 7), Number of H bond acceptors (0 to 12), LogD (1 to 3), LogS (-4 to 0.5), LogP (0 to 3).

2. General Experimental Considerations

Materials/procedures: Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dioxane, tetrahydrofuran (THF), and $\mathrm{N}, \mathrm{N}-$ dimethylformamide (DMF) were dried by passing through an activated alumina column under argon in an MBraun SPS-800 solvent dispenser. All other reagents were used as received from the suppliers. Caesium carbonate and copper(I) chloride were weighed out in a glove box under nitrogen. Petrol refers to the fraction of petroleum ether which boils in the range $40-60{ }^{\circ} \mathrm{C}$. Brine refers to a saturated aqueous solution of NaCl . All air- or moisture-sensitive reactions were carried out with anhydrous solvents in glassware dried under vacuum and heated with a heat gun under an inert atmosphere of nitrogen. For reactions that require heating, an oil bath was employed. The temperature was monitored via a temperature probe plugged into the stirrer plate.

Chromatography: Thin-layer chromatography was performed on pre-coated aluminium-backed plates (Merck Kieselgel $60 \mathrm{~F}_{254}$ plates), which were visualised with UV fluorescence (254 nm) and/or staining with potassium(VII) manganate, vanillin, phosphomolybdic acid or ninhydrin followed by heating with a heat gun. Column chromatography refers to normal phase column chromatography unless specified otherwise and was performed manually using Geduran ${ }^{\circledR}$ Silicagel 60 (40-63 $\mu \mathrm{m}$), under a positive
pressure of nitrogen with the solvent system used in parentheses. Retention factors (R_{f}) are reported with the solvent system in parentheses.

Infrared Spectroscopy: Infrared spectra were recorder on a Bruker Tensor 27 Fourier transform spectrometer, as a thin film on a diamond ATR module. Wavelengths of maximum absorbance ($\mathrm{v}_{\max }$) are quoted in cm^{-1}. Only selected, characteristic IR absorption data are provided for each compound.

NMR Spectroscopy: Proton (${ }^{1} \mathrm{H}$) NMR spectra were recorded at 400 or 500 MHz and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra at 101 or 126 MHz with ${ }^{1} \mathrm{H}$ decoupling. Spectra were recorded on Bruker AVIIIHD 400 or Bruker AVIIIHD 500 spectrometers. Chemical shifts (δ_{H} and δ_{C}) are expressed in parts per million (ppm), referenced to the residual solvent peak of $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$. Coupling constants (J) are reported to the nearest 0.1 Hz . Splitting patterns are described using the following abbreviations: s (singlet), d (doublet), dd (doublet of doublets), ddt (doublet of doublet of triplets), dt (doublet of triplets), t (triplet), q (quartet), m (multiplet) and br (broad).

Mass Spectrometry: Low-resolution mass spectra were recorded on a Micromass LCT Premier Open Access using electrospray ionisation (ESI). High-resolution mass spectra (HRMS) were recorded by the Departmental Mass Spectrometry Service, University of Oxford on a Thermo Scientific Exactive Mass Spectrometer (using a Waters Equity autosampler and pump) for electrospray ionisation (ESI). High resolution values are calculated to 4 decimal places from the molecular formula, and all values are within a tolerance of 5 ppm .

3. General Synthetic Methods

General Method A: MOM protection of phenols

A solution of phenol (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.2 \mathrm{M}\right.$) was cooled to $0^{\circ} \mathrm{C}$ and chloromethyl methyl ether was added (1.5 equiv.), followed by dropwise addition of DIPEA (2.0 equiv.) The resulting solution was allowed to warm to room temperature and stirred until the reaction was complete. The reaction mixture was washed successively with aqueous $0.5 \mathrm{M} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, aqueous 1 M NaOH and brine, dried over MgSO_{4}, and evaporated to dryness.

General Method B: Ortho-lodination of protected phenols

To a solution of protected phenol (1.0 equiv.) in anhydrous THF (0.6 M) was added tetramethylethylenediamine (1.5 equiv.) The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ then sec-butyllithium solution (1.4 M in hexane, 1.5 equiv.) was added dropwise and stirred for 3 h . lodine (1.5 equiv.) was added slowly as a solution in anhydrous THF (5 mL), and after 10 mins was allowed to warm to room temperature and stirred until the reaction was complete. The resulting solution was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq., sat.), diluted with $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the layers separated. The aqueous was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic extracts washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq., sat.), brine, dried over MgSO_{4} and evaporated to dryness.

General Method C: MOM deprotection of phenols

To a solution of protected phenol (1.0 equiv.) in MeOH (0.03 M) was added aqueous $2 \mathrm{M} \mathrm{HCl}(0.1 \mathrm{v} / \mathrm{v}$) and left stirring until the reaction was complete. The reaction mixture was basified to pH 5 with aqueous 1 M NaOH , diluted with EtOAc and the layers separated. The aqueous was extracted with EtOAc, combined organic extracts washed with brine, dried over MgSO_{4} and evaporated to dryness.

General Method D: Benzylation of phenols

To a solution of phenol (1.0 equiv.) and potassium carbonate (2.5 equiv.) in DMF (0.13 M) was added benzyl chloride (1.2 equiv.) and heated to $80^{\circ} \mathrm{C}$ while stirring until the reaction was complete. The reaction mixture was diluted with $\mathrm{EtOAc}, \mathrm{H}_{2} \mathrm{O}$ and separated. The organic extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4} and evaporated to dryness.

General Method $\mathrm{E}(\mathrm{a}, \mathrm{b})$: Ullmann cross-coupling

A vial containing halide (1.0 equiv.), CuCl (0.5 equiv.) and caesium carbonate (2.0 equiv.), was capped with a rubber septum then evacuated and backfilled with $N_{2}(\times 3)$. To this was added phenol (2 equiv.), N-methyl-2-pyrrolidone (5 M wrt halide) and 2,2,6,6-tetramethyl-3,5-heptanedione (0.5 equiv.) via syringe, then evacuated and backfilled with $\mathrm{N}_{2}(\times 3)$ before addition of de-gassed 1,4-dioxane (2.5 M $w r t$ halide) (a only). The vial was capped and taped, and the reaction mixture heated to $80^{\circ} \mathrm{C}$ (a) or $120^{\circ} \mathrm{C}$ (b) until complete. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with 35% ammonia solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness.

General Method F: PMB deprotection of phenols

To a solution of PMB-protected phenol (1 equiv.) in EtOH (0.05 M) was added aqueous 1 M HCl $(0.02 \mathrm{M})$ and heated to $80^{\circ} \mathrm{C}$ while stirring until the reaction was complete. The reaction mixture was basified to pH 7 with aqueous 1 M NaOH , extracted with EtOAc, combined organic extracts washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness.

General Method G: Acylation of phenols

To a solution of phenol (1.0 equiv.) in pyridine (23.0 equiv.) was added acetic anhydride (7.5 equiv.) and heated to $100^{\circ} \mathrm{C}$ while stirring for 2 h . The reaction mixture was cooled to room temperature and quenched with ice. The solution was acidified to pH 7 by dropwise addition of aqueous 1 M HCl , extracted with EtOAc, combined organic extracts washed with aqueous 1 M HCl , brine, dried over MgSO_{4} and evaporated to dryness.

General Method H: Reductive amination

To a solution of aldehyde (1.0 equiv.) and amine (1.0 equiv.) in anhydrous THF (0.13 M wrt aldehyde) was added $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (1.5 equiv.) and left stirring until the reaction was complete. The reaction mixture was quenched with NaHCO_{3} (sat. aq.), extracted with $\mathrm{Et}_{2} \mathrm{O}$, combined organic extracts washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness.

4. Synthesis and characterization of compounds

Final compounds $\mathbf{1 - 3 , 8 - 1 0 , 1 3 , 1 4 , 1 7 - 2 2 , ~ a n d ~ 3 6 - 3 9}$ were prepared as previously published ${ }^{2}$.
Synthesis of the remaining compounds are presented below.

$\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, morpholine,

Dehydrodieugenol B

Scheme 1: Synthetic routes to analogues 4-7. Dehydrodieugenol B prepared as previously published².

5-Allyl-1-(4-allyl-2-methoxyphenoxy)-2-(2-bromoethoxy)-3-methoxybenzene, S1

To a solution of dehydrodieugenol $B,(109 \mathrm{mg}, 0.330 \mathrm{mmol}, 1.0$ equiv.) and potassium carbonate (138 $\mathrm{mg}, 1.00 \mathrm{mmol}, 3.0$ equiv.) in acetonitrile (1.70 mL) was added 1,2-dibromoethane ($140 \mu \mathrm{~L}, 1.65 \mathrm{mmol}$, 5.0 equiv.) and heated to $80^{\circ} \mathrm{C}$ while stirring until the reaction was complete (18 h). The solution was cooled to room temperature, filtered, and evaporated to dryness. Purification via column chromatography ($1: 0 \rightarrow 4: 1$ pentane / EtOAc) afforded the title compound ($72 \mathrm{mg}, 0.17 \mathrm{mmol}, 50 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.40$ (4:1 pentane / EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 2935, 2360, 1638, 1587, $1595,1424,1266,1187,1152,1092 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{ddt}, J=$ $16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.92(\mathrm{~m}, 4 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dt}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{dt}, J=6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,150.7,150.6,143.7,137.4,137.0,136.3,136.2,136.1,120.8,119.7,116.0,115.9$,
113.0, 111.0, 107.2, 72.7, 56.1, 55.9, 40.1, 40.0, 29.5; HRMS (ESI+) calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ 433.1009, found 433.1010.

1-(2-(4-Allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)ethyl)pyrrolidine, 4

To a solution of 5-allyl-1-(4-allyl-2-methoxyphenoxy)-2-(2-bromoethoxy)-3-methoxybenzene, S1 $(35 \mathrm{mg}, 0.080 \mathrm{mmol}, 1.0$ equiv.) in acetone (5.0 mL) was added potassium carbonate (112 mg , $0.800 \mathrm{mmol}, 10$ equiv.), potassium iodide ($27 \mathrm{mg}, 0.16 \mathrm{mmol}, 2.0$ equiv.), pyrrolidine ($34 \mu \mathrm{~L}$, $0.40 \mathrm{mmol}, 5.0$ equiv.) and heated to $75^{\circ} \mathrm{C}$ while stirring until the reaction was complete (18 h). The solution was cooled to room temperature and diluted with EtOAc (10 mL), washed with aqueous 0.1 M HCl , brine, dried over MgSO_{4} and evaporated to dryness. Purification via column chromatography (1 : $0 \rightarrow 9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) afforded the title compound ($8 \mathrm{mg}, 0.02 \mathrm{mmol}, 23 \%$) as a pale yellow oil; R_{f} 0.23 (19 : $1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2919, 2850, 2361, 1589, 1507, 1463, 1428, 1266, 1212, 1154; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, \mathrm{J}=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.13-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.29(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dt}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{dt}, J=6.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 2 \mathrm{H})$, $3.04-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.8,150.6,150.5,144.4,137.6$, 137.2, 137.1, 136.0, 135.8, 120.9, 119.3, 116.1, 116.0, 113.1, 111.7, 107.6, 71.1, 56.2, 56.1, 55.4, 54.3, 40.2, 40.1; $\mathrm{HRMS}(E S I+)$ calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 424.2482$, found 424.2479.

4-(2-(4-Allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)ethyl)morpholine, 5

To a solution of 5-allyl-1-(4-allyl-2-methoxyphenoxy)-2-(2-bromoethoxy)-3-methoxybenzene, S1 $(35 \mathrm{mg}, 0.080 \mathrm{mmol}, 1.0$ equiv.) in acetone (5.0 mL) was added potassium carbonate (112 mg , $0.800 \mathrm{mmol}, 10$ equiv.), potassium iodide ($27 \mathrm{mg}, 0.16 \mathrm{mmol}, 2.0$ equiv.), morpholine ($35 \mu \mathrm{~L}, 0.40$ $\mathrm{mmol}, 5.0$ equiv.) and heated to $75^{\circ} \mathrm{C}$ while stirring until the reaction was complete (18 h). The solution was cooled to room temperature and diluted with EtOAc (10 mL), washed with aqueous 0.1 M HCl , brine, dried over MgSO_{4} and evaporated to dryness. Purification via column chromatography (1: $0 \rightarrow 0: 1$ pentane / EtOAc) afforded the title compound ($30 \mathrm{mg}, 0.070 \mathrm{mmol}, 83 \%$) as a colourless oil; $\mathrm{R}_{f} 0.30$ (3:7 pentane / EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2921, 2851, 1586, 1505, 1452, 1425, 1330, 1265, 1151, 1092; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (dd, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.81(\mathrm{~m}, 2 \mathrm{H}), 5.14-4.98(\mathrm{~m}$,
$4 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) 3.69-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{dd}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.24(\mathrm{dt}, J=6.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.8,150.5,150.3,144.5,137.5,137.4,137.2,135.8,135.8,120.8,118.9,116.1,116.0,113.0,112.0$, 107.7, 70.5, 67.1, 58.4, 56.1, 56.0, 53.9, 40.2, 40.1; HRMS (ESI+) calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 440.2431$, found 440.2422.

Methyl 2-(4-allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)acetate, S2

To a solution of dehydrodieugenol B, ($50 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv.) and potassium carbonate (32 mg , $0.23 \mathrm{mmol}, 1.5$ equiv.) in acetone (0.25 mL) was added methyl bromoacetate ($22 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 1.5$ equiv.) and left stirring for 20 h . An additional portion of potassium carbonate ($32 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.5$ equiv.) and methyl bromoacetate ($22 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 1.5$ equiv.) were added and stirred until the reaction was complete (4 h). The solution was filtered through a pad of celite, dried over MgSO_{4} and evaporated to dryness. Purification via column chromatography (1:0 $0 \rightarrow 4: 1$ pentane / EtOAc) afforded the title compound ($60 \mathrm{mg}, 0.15 \mathrm{mmol}, 98 \%$) as a colourless oil; $\mathrm{R}_{f} 0.31$ ($4: 1$ pentane / EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2919, 2850, 2361, 1766, 1738, 1589, 1507, 1428, 1212, 1152; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.0,2.0,1 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{H}, 1 \mathrm{H}), 5.97(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (ddt, J = 17.5, 9.5, 6.6 $\mathrm{Hz}, 1 \mathrm{H}), 5.17-4.95(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dt}, \mathrm{J}=6.6,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{dt}, \mathrm{J}=6.7,1.5,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,153.2,150.8,150.5,143.7,137.5$, $137.1,136.5,136.1,136.0,120.9,120.1,116.1,116.0,113.2,111.0,107.3,69.8,56.3,56.0,52.0,40.2$, 40.1; HRMS (ESI+) calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+399.1802$, found 399.1795 .

2-(4-Allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)-1-(pyrrolidin-1-yl)ethan-1-one, 6

A solution of methyl 2-(4-allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)acetate, S2 (40 mg, $0.10 \mathrm{mmol}, 1.0$ equiv.) in pyrrolidine ($44 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 5.2$ equiv.) was heated to $75^{\circ} \mathrm{C}$ while stirring until the reaction was complete (24 h). The solution was cooled to room temperature and diluted with EtOAc (5 mL), washed with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat., aq.), dried over MgSO_{4} and evaporated to dryness. Purification via column chromatography (1:0 $\rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($41 \mathrm{mg}, 0.092$ $\mathrm{mmol}, 92 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.14$ (1:1 pentane / EtOAc); IR (thin film, $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$) 2923, 1639, $1588,1505,1451,1426,1265,1212,1152,1091 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.69$ (dd, J = 8.1, 1.9 Hz, 1H), $6.47(d, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.15-4.97$
$(\mathrm{m}, 4 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{dd}$, $J=6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{dt}, J=28.5,5.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (167.1, 153.6, 150.6, 150.5, 144.2, 137.5, 137.1, 136.4, 136.3, 136.2, 121.0, 119.5, 116.1, 116.0, 113.1, 111.5, 107.6, 73.0, 56.3, 56.1, 46.2, 46.2, 40.2, 40.1, 26.4, 24.0; HRMS (ESI+) calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+} 438.2275$, found 438.2271 .

2-(4-Allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)-1-morpholinoethan-1-one, 7

A solution of methyl 2-(4-allyl-2-(4-allyl-2-methoxyphenoxy)-6-methoxyphenoxy)acetate, $\mathbf{S 2}$ (40 mg , $0.10 \mathrm{mmol}, 1.0$ equiv.) in morpholine ($46 \mu \mathrm{~L}, 0.52 \mathrm{mmol}, 5.2$ equiv.) was heated to $60^{\circ} \mathrm{C}$ while stirring until the reaction was complete (24 h). The solution was cooled to room temperature and diluted with EtOAc (5 mL), washed with $\mathrm{NH}_{4} \mathrm{Cl}\left(\right.$ sat., aq.), dried over MgSO_{4} and evaporated to dryness. Purification via column chromatography ($1: 0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($46 \mathrm{mg}, 0.10$ mmol, 99\%) as a colourless oil; $\mathrm{R}_{f} 0.29$ (1:1 pentane / EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2921, 2854, 1649, 1589, 1506, 1452, 1267, 1212, 1152, 1091; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.70$ (dd, J = 8.1, 1.9 Hz, 1H), $6.48(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (ddt, J=16.9, 10.2, 6.7 Hz , $1 \mathrm{H}), 5.92-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.14-4.97(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 2 \mathrm{H})$, $3.65-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{dt}, J=6.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{dt}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 167.1,154.4,150.0,144.4,137.4,137.0,136.8,136.5,136.1,121.0,119.5$, $116.2,116.2,113.1,111.3,107.5,72.7,67.1,66.9 .56 .2,56.0,46.3,42.5,40.2,40.1$; HRMS (ESI+) calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 454.2224$, found 454.2224 .

Scheme 2: Synthetic route to analogues 11 and 15. 5-Allyl-1-iodo-3-methoxy-2(methoxymethoxy)benzene prepared as previously published ${ }^{2}$.

5-Allyl-1-methoxy-2-(methoxymethoxy)-3-(2-methoxyphenoxy)benzene, S3

The product was prepared according to General Method $\mathrm{E}(\mathrm{a})$ from 5-allyl-1-iodo-3-methoxy2 (methoxymethoxy)benzene ($81 \mathrm{mg}, 0.24 \mathrm{mmol}$) and guaiacol ($53 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) The reaction was complete after 72 h . Purification via column chromatography ($1: 0 \rightarrow 4: 1$ petrol / EtOAc) afforded the title compound ($22 \mathrm{mg}, 0.067 \mathrm{mmol}, 28 \%$) as a colourless oil; $\mathrm{R}_{f} 0.22$ (9:1 petrol / EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 2936, 2838, 1638, 1501, 1454, 1333, 1302, 1255, 1177, 1079; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ $(\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.56$ ($\mathrm{s}, 3 \mathrm{H}$), $3.24(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,150.8,150.6,145.8,137.1,136.3$, 134.7, 124.1, 121.1, 119.5, 116.1, 112.7, 111.6, 107.5, 98.5, 57.2, 56.1, 56.0, 40.2; HRMS (ESI+) calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 353.1359$, found 353.1356 .

4-Allyl-2-methoxy-6-(2-methoxyphenoxy)phenol, 15

The product was prepared according to General Method C from 5-allyl-1-methoxy-2(methoxymethoxy)-3-(2-methoxyphenoxy)benzene, S3 (22 mg, 0.070 mmol). The reaction was complete after 20 h. Purification via column chromatography ($4: 1$ petrol / EtOAc) afforded the title compound ($10 \mathrm{mg}, 0.040 \mathrm{mmol}, 54 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.36$ ($7: 3$ petrol / EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) $3448,2920,1588,1500,1455,1434,1310,1254,1177,1083 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.09 (td, J = 7.7, 1.6 Hz, 1H), $7.02-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.42 (d, J = 1.7 H, 1H), $5.97-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.11-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, 3.25 (d, J = 6.6 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,148.0,146.2,144.2,137.5,135.4,131.3$, $124.4,121.1,119.4,115.9,112.6,112.3,107.5,56.4,56.1,40.0 ;$ HRMS (ESI+) calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 309.1097, found 309.1097.

4-Allyl-2-methoxy-6-(2-methoxyphenoxy)phenyl acetate, 11

The product was prepared according to General Method G from 4-allyl-2-methoxy-6(2methoxyphenoxy)phenol, 15 ($87 \mathrm{mg}, 0.29 \mathrm{mmol}$). Purification via column chromatography ($1: 0 \rightarrow$ 4:1 petrol / EtOAc) afforded the title compound ($59 \mathrm{mg}, 0.18 \mathrm{mmol}, 61 \%$) as a white solid; MP $74-$ $77{ }^{\circ} \mathrm{C}$ (pentane); $\mathrm{R}_{f} 0.46$ (4:1 petrol / EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2918, 1762, 1610, 1499, 1437, $1364,1306,1256,1161,1116,1094 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{td}, \mathrm{J}=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.80(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (ddt, J=16.0, $10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) 168.6, 152.4, 151.1, 150.0, 145.4, 138.5, 136.8, 131.3, 124.7, 121.1, 120.6, $116.3,112.9,110.8,106.9,56.2,56.1,40.3,20.4$; $\mathrm{HRMS}(E S I+)$ calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 329.1384$, found 329.1382.

Scheme 3: Synthetic routes to analogues 12 and 16. 1-(4-Allyl-2-methoxyphenoxy)-3-methoxy-2-((4methoxybenzyl)oxy)benzene prepared as previously published ${ }^{2}$.

2-(4-Allyl-2-methoxyphenoxy)-6-methoxyphenol, 16

The product was prepared according to General Method F from 1-(4-allyl-2-methoxyphenoxy)3 methoxy-2-((4-methoxybenzyl)oxy)benzene ($74 \mathrm{mg}, 0.19 \mathrm{mmol}$). The reaction was complete after 2 h . Purification via column chromatography (1:0 \rightarrow 4:1 pentane / EtOAc) afforded the title compound ($39 \mathrm{mg}, 0.14 \mathrm{mmol}, 76 \%$) as a colourless oil; $\mathrm{R}_{f} 0.33$ (4:1 pentane / EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) $3502,2936,1595,1505,1476,1358,1261,1152,1073,1033 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.91(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.06-5.89(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.6,148.2,145.1,144.1,137.3,137.1,136.8,120.9,120.0,119.1,116.1,113.0$, 111.6, 106.8, 56.4, 56.1, 40.1; HRMS (ESI+) calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 309.1097$, found 309.1097.

2-(4-Allyl-2-methoxyphenoxy)-6-methoxyphenyl acetate, 12

The product was prepared according to General Method G from 2-(4-allyl-2-methoxyphenoxy)6 methoxyphenol, 16 ($39 \mathrm{mg}, 0.14 \mathrm{mmol}$). The reaction was complete after 2 h . Purification via column chromatography (9:1 pentane / EtOAc) afforded the title compound ($32 \mathrm{mg}, 0.10 \mathrm{mmol}, 70 \%$) as an off-white solid; MP $82-85^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.41$ ($4: 1$ pentane / EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2917, 1760, $1505,1474,1418,1251,1212,1178,1083,1030 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{td}, \mathrm{J}=8.3,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (ddd, $J=19.4,8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=$ $8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,152.4,151.1,150.0,145.4,138.5,136.8,128.7$, $124.7,121.1,120.6,116.3,112.9,110.8,106.9,56.2,56.1,40.3,20.4$; HRMS (ESI+) calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}$329.1384, found 329.1384.

Scheme 4: Synthetic routes to analogues 23, 24, 31 and 32. 5-Allyl-1-iodo-3-methoxy-2-((4methoxybenzyl)oxy)benzene prepared as previously published ${ }^{2}$.

2-Methoxy-4-(morpholinomethyl)phenol, S4

The product was prepared according to General Method H from vanillin ($3.00 \mathrm{~g}, 19.7 \mathrm{mmol}$) and morpholine ($1.71 \mathrm{~mL}, 19.7 \mathrm{mmol}$). The reaction was complete after 24 h to afford the title compound ($4.28 \mathrm{~g}, 19.2 \mathrm{mmol}, 97 \%$) as a clear gum which was used without any further purification; $\mathrm{R}_{f} 0.05$ (3 : 2 EtOAc / pentane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (dd, J = 7.8, 1.9 Hz, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.7,145.1,129.5,122.4,114.2,111.9,67.1,63.5,56.1,53.7$. Spectroscopic data is in accordance with that reported in the literature ${ }^{3}$.

2-Methoxy-4-(pyrrolidin-1-ylmethyl)phenol, S5

The product was prepared according to General Method H from vanillin ($800 \mathrm{mg}, 5.26 \mathrm{mmol}$) and pyrrolidine ($0.48 \mathrm{~mL}, 5.26 \mathrm{mmol}$). The reaction was complete after 12 h to afford the title compound ($750 \mathrm{mg}, 3.62 \mathrm{mmol}, 69 \%$) as white powder; $\mathrm{R}_{f} 0.2$ (3:2 EtOAc / pentane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93$ (br., s, 1H), $6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.56-2.52$
$(\mathrm{m}, 4 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,145.1,131.0,122.0,114.3,111.9,60.8$, $56.0,54.2,23.6$. Spectroscopic data is in accordance with that reported in the literature ${ }^{3}$.

2-Methoxy-4-(piperidin-1-ylmethyl)phenol, S6

The product was prepared according to General Method H from vanillin ($1.00 \mathrm{~g}, 6.57 \mathrm{mmol}$) and piperidine ($670 \mu \mathrm{~L}, 6.57 \mathrm{mmol}$). The reaction was complete after 16 h . Purification via column chromatography ($1: 0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($0.94 \mathrm{~g}, 4.2 \mathrm{mmol}, 64 \%$) as a white solid; $\mathrm{R}_{f} 0.19$ (EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 4 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.33$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.94,145.14,129.17,129.12,122.43,114.28,63.71,55.57$, $54.32,25.53,24.32$. Spectroscopic data is in accordance with that reported in the literature ${ }^{3}$.

4-(4-(5-Allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)morpholine, 24

The product was prepared according to General Method $\mathrm{E}(\mathrm{a})$ from 5-allyl-1-iodo-3-methoxy-2-((4methoxybenzyl)oxy)benzene ($1.50 \mathrm{~g}, 3.70 \mathrm{mmol}$) and 2-methoxy-4-(morpholinomethyl)phenol, S4 $(1.63 \mathrm{~g}, 7.40 \mathrm{mmol})$. The reaction was complete after 72 h . Purification via column chromatography (1 $: 0 \rightarrow 1: 1$ pentane / EtOAc) afforded the title compound ($1.04 \mathrm{~g}, 2.06 \mathrm{mmol}, 56 \%$) as a yellow oil; R_{f} 0.42 (EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2936, 2851, 1585, 1508, 1455, 1420, 1232, 1116, 1091; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl ${ }_{3}$) $\delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.76$ (dd, J=8.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{ddt}, J=17.5$, $9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, \mathrm{J}=4.7$ $\mathrm{Hz}, 4 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{dt}, J=6.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 101 \mathrm{MHz}\right) \delta$ $159.2,154.0,150.3,150.2,145.5,137.2,137.1,135.7,133.2,130.1,130.0,121.5,118.2,115.9,113.4$, $113.3,112.3,107.9,74.6,67.1,63.2,56.1,56.1,55.2,53.6,40.1,14.2$; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 506.2532$, found 506.2537 .

4-Allyl-2-methoxy-6-(2-methoxy-4-(morpholinomethyl)phenoxy)phenol, 31

To a solution of 4-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl) morpholine, 24 ($1.45 \mathrm{~g}, 2.88 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added aqueous $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and heated to $80^{\circ} \mathrm{C}$ while stirring until the reaction was complete (24 h). The solution was basified to pH 7 with aqueous 1 M NaOH , extracted with EtOAc, combined organic extracts washed with brine,
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. Purification via column chromatography (1:9 to 1:0 EtOAc / pentane) afforded the title compound ($758 \mathrm{mg}, 1.98 \mathrm{mmol}, 69 \%$) as a yellow oil; $\mathrm{R}_{f} 0.20$ (EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 3054, 1592, 15122, 1435, 1267, 1189, 1145, 1120, 1085, 736; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50$ (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.41(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.40\left(\mathrm{~m}, 4 \mathrm{H},{ }^{13} \mathrm{C}\right.$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3,148.0,145.2,144.2,137.4,135.4,134.0,131.1,121.5,118.8,115.7,113.3,112.2$, 107.4, 67.0, 63.2, 56.2, 56.1, 53.6, 39.9; HRMS (ESI ${ }^{+}$) calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]+386.1967$, found 386.1963.

1-(4-(5-Allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)pyrrolidine, 23

The product was prepared according to General Method $\mathrm{E}(\mathrm{a})$ from 5-allyl-1-iodo-3-methoxy-2-((4methoxybenzyl)oxy)benzene ($600 \mathrm{mg}, 1.46 \mathrm{mmol}$) and 2-methoxy-4-(pyrrolidin-1-ylmethyl)phenol, S5 ($454 \mathrm{mg}, 2.19 \mathrm{mmol}$). The reaction was complete after 12 h . Purification via column chromatography ($1: 0 \rightarrow 9: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) afforded the title compound ($168 \mathrm{mg}, 0.343 \mathrm{mmol}, 23 \%$) as a colourless oil; $\mathrm{R}_{f} 0.3$ (EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 1586, 1508, 1463, 1421, 1248, 1232, 1212, 1091.61, 996, 918, 731 ; ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) $\delta 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 5.89$ (ddt, J = 17.5, 9.5, 6.7Hz, $1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.51-2.50(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 159.2,153.9,150.5,150.3$, 145.1, 137.1, 137.1, 135.7, 130.2, 130.1, 130.0, 121.2, 118.5, 115.9, 113.4, 113.2, 112.0, 107.7, 74.6, $60.6,56.1,56.1,55.2,54.2,40.1,23.5$; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 490.25836$, found 490.25880 .

4-Allyl-2-methoxy-6-(2-methoxy-4-(pyrrolidin-1-ylmethyl)phenoxy)phenol, 32

The product was prepared according to General Method F from 1-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)pyrrolidine, 23 ($71 \mathrm{mg}, 0.15 \mathrm{mmol}$). The reaction was complete after 3 h . Purification via column chromatography pre-washed with 1% triethylamine in petrol ($1: 0 \rightarrow 1: 1$ petrol / EtOAc) afforded the title compound ($15 \mathrm{mg}, 0.041 \mathrm{mmol}, 27 \%$) as a colourless oil; $\mathrm{R}_{f} 0.8$ (9:1 EtOAc / MeOH); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (ddt, $J=17.9,9.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 2 \mathrm{H})$, $2.57-2.48(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{p}, \mathrm{J}=3.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 150.3,147.9,144.9,144.4$, $137.4,135.3,131.0,121.2,119.0,115.7,113.1,112.0,107.3,60.6,56.2,56.0,54.2,39.9,29.7,23.5 ;$ HRMS (ESI+) calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.2013$, found 370.2006.

Scheme 5: Synthetic routes to analogues 25 and 26. 1-lodo-3-methoxy-2-((4-methoxybenzyl)oxy)-5propylbenzene prepared as previously published ${ }^{2}$.

4-(3-Methoxy-4-(3-methoxy-2-((4-methoxybenzyl)oxy)-5-propylphenoxy)benzyl)morpholine, 25

The product was prepared according to General Method $\mathrm{E}(\mathrm{b})$ from 1-iodo-3-methoxy-2-((4-methoxybenzyl)oxy)-5-propylbenzene (270 mg, 0.650 mmol) and 2-methoxy-4(morpholinomethyl)phenol, S4 $(292 \mathrm{mg}, 1.31 \mathrm{mmol})$. The reaction was complete after 48 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($220 \mathrm{mg}, 0.430 \mathrm{mmol}, 66 \%$) as a yellow wax; $\mathrm{R}_{f} 0.31$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 6 \mathrm{H}), 1.63-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,153.8,150.1,149.9,145.9$, 138.5, 137.0, 130.2, 130.0, 121.6, 117.8, 113.4, 112.3, 108.0, 74.6, 66.9, 63.2, 56.1, 56.1, 55.2, 53.5, 38.0, 24.4, 13.7; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]+508.2694$, found 508.2694.

1-(3-Methoxy-4-(3-methoxy-2-((4-methoxybenzyl)oxy)-5-propylphenoxy)benzyl)piperidine, 26

The product was prepared according to General Method $E(b)$ from 1-iodo-3-methoxy-2-((4-methoxybenzyl)oxy)-5-propylbenzene ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 2-methoxy-4-(piperidin-1ylmethyl)phenol, $\mathbf{S 6}$ ($54 \mathrm{mg}, 0.24 \mathrm{mmol}$). The reaction was complete after 48 h . Purification via column chromatography (1:0 0 3:7 pentane / EtOAc) afforded the title compound ($42 \mathrm{mg}, 0.083 \mathrm{mmol}$, 69%) as a yellow wax; $\mathrm{R}_{f} 0.28$ (EtOAc); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, 6.79 (d, J = 8.7 Hz, 2H), 6.75 (dd, J = 8.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.36(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.49-2.36(\mathrm{~m}$, $6 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2$, $152.8,149.1,144.5,137.4,135.9,133.2,129.2,129.0,121.3,120.5,116.9,112.5,112.4,111.1,106.8$, $73.6,62.4,55.1,55.1,54.2,53.4,37.0,24.8,23.4,23.3,12.7$; HRMS (ESI+) calc. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 506.2901, found 506.2903.

Scheme 6: Synthetic routes to analogue 35. 4-Allylphenol prepared as previously published².

4-Propylphenol, S7

A suspension of $10 \% \mathrm{w} / \mathrm{w} \mathrm{Pd} / \mathrm{C}(0.71 \mathrm{~g}, 6.7 \mathrm{mmol}, 0.3$ equiv.) in EtOH (250 mL) was evacuated and backfilled with $\mathrm{H}_{2}(\times 3)$ before addition of 4-allylphenol ($3.00 \mathrm{~mL}, 22.0 \mathrm{mmol}, 1.0$ equiv.) and a further purge with $\mathrm{H}_{2}(\times 3)$. The resulting suspension was stirred under a H_{2} atmosphere until the reaction was complete (2 h), then filtered through a pad of Celite ${ }^{\circledR}$ and washed with EtOAc. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford the title compound ($2.91 \mathrm{~g}, 21.4 \mathrm{mmol}, 96 \%$) as a yellow oil; $\mathrm{R}_{f} 0.50$ (9 : 1 pentane / EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.97$ (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.68 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{t}, 2 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.4,135.0,129.5,115.0,37.2,24.8,13.8$. Spectroscopic data is in accordance with that reported in the literature ${ }^{4}$.

1-(Methoxymethoxy)-4-propylbenzene, S8

The product was prepared according to General Method A from 4-propylphenol, S7 (1.50 g, 11.0 mmol). Purification via column chromatography (19 : 1 pentane / EtOAc) afforded the title compound ($1.15 \mathrm{~g}, 6.38 \mathrm{mmol}, 58 \%$); $\mathrm{R}_{f} 0.75$ ($9: 1$ pentane / EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.09$ (d, J = 8.7 Hz, 2H), $6.96(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{dq}, \mathrm{J}=$ $14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,136.2,129.3,116.1,94.7$, $55.9,37.2,24.7,13.8$. Spectroscopic data is in accordance with that reported in the literature ${ }^{5}$.

2-lodo-4-propylphenol, S9

2-lodo-1-(methoxymethoxy)-4-propylbenzene ($900 \mathrm{mg}, 3.42 \mathrm{mmol}$) was freshly synthesized according to General Method B from 1-(methoxymethoxy)-4-propylbenzene, $\mathbf{S 8}$ ($1.10 \mathrm{~g}, 6.11 \mathrm{mmol})$. This was then used to prepare the product according to General Method C . The reaction was complete after 24 h. Purification via column chromatography (1:0 $04: 1$ pentane / EtOAc) afforded the title compound ($600 \mathrm{mg}, 2.68 \mathrm{mmol}, 44 \%$) as a white wax; $\mathrm{R}_{f} 0.77$ (9:1 pentane / EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H})$, $2.52-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8$, $137.8,137.0,130.3,114.7,85.5,36.6,24.6,13.7$. Spectroscopic data is in accordance with that reported in the literature ${ }^{6}$.

2-lodo-1-((4-methoxybenzyl)oxy)-4-propylbenzene, S10

The product was prepared according to General Method D from 2-iodo-4-propylphenol, s9 (600 mg, 2.30 mmol) and 4-methoxybenzyl chloride ($373 \mu \mathrm{~L}, 2.75 \mathrm{mmol}$). The reaction was complete after 2 h . Purification via column chromatography (9:1 pentane / EtOAc) afforded the title compound (650 mg , $1.70 \mathrm{mmol}, 74 \%$) as a white solid; $\mathrm{R}_{f} 0.83$ (9:1 pentane / EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.3,155.4,139.3,137.3,129.3,128.8,128.7,113.9,112.9,86.9,71.0$, 55.3, 36.7, 24.6, 13.7; HRMS (ESI+) calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{IO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 383.0503$, found 383.0497.

4-(3-Methoxy-4-(2-((4-methoxybenzyl)oxy)-5-propylphenoxy)benzyl)morpholine, 35

The product was prepared according to General Method $\mathrm{E}(\mathrm{b})$ from 2-iodo-1-((4-methoxybenzyl)oxy)-4-propylbenzene, S10 ($20 \mathrm{mg}, 0.052 \mathrm{mmol}$) and 2-methoxy-4-(morpholinomethyl)phenol, S4 (23 mg, 0.10 mmol). The reaction was complete after 48 h . Purification via column chromatography pre-washed with 1\% triethylamine in petrol ($1: 0 \rightarrow 3: 7$ petrol / EtOAc) afforded the title compound ($17 \mathrm{mg}, 0.035 \mathrm{mmol}, 69 \%$) as a yellow wax; $\mathrm{R}_{f} 0.35$ (EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.73(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,149.9,148.0,136.4,129.4,128.8,128.7,124.6,124.3$, 121.1, 116.8, 115.7, 113.7, 113.6, 111.4, 105.5, 71.0, 66.4, 63.1, 56.3, 55.3, 53.4, 37.2, 24.5, 13.7; HRMS (ESI+) calc. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 478.2558$, found 478.2586.

Scheme 7: Synthetic routes to analogues 33 and 34 from 5-iodovanillin.

3-lodo-5-methoxy-4-((4-methoxybenzyl)oxy)benzaldehyde, S11

The product was prepared according to General Method D from 5-iodovanillin ($1.00 \mathrm{~g}, 3.60 \mathrm{mmol}$) and 4 -methoxybenzyl chloride ($585 \mu \mathrm{~L}, 4.31 \mathrm{mmol}$). The reaction was complete after 2 h . Purification via column chromatography ($1: 0 \rightarrow 9: 1$ pentane / EtOAc) afforded the title compound ($1.23 \mathrm{~g}, 3.09$ $\mathrm{mmol}, 87 \%$) as a white solid; $\mathrm{R}_{f} 0.16$ ($9: 1$ pentane / EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H})$, 7.84 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.09 (s, $2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 189.7,159.8,153.1,153.0,134.9,133.9$, 130.5, 128.6, 113.8, 111.0, 93.0, 74.6, 56.1, 55.3; HRMS (ESI+) calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{IO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 399.0088$, found 399.0089.

1-(3-lodo-5-methoxy-4-((4-methoxybenzyl)oxy)benzyl)piperidine, S12

The product was prepared according to General Method H from 3-iodo-5-methoxy-4-((4methoxybenzyl)oxy)benzaldehyde, S11 ($0.10 \mathrm{~g}, 0.25 \mathrm{mmol}$) and piperidine ($26 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$). The reaction was complete after 16 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound (56 mg , $0.12 \mathrm{mmol}, 48 \%$) as a yellow wax; $\mathrm{R}_{f} 0.10$ (EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.28 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 ($\mathrm{s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.39$ ($\mathrm{s}, 2 \mathrm{H}$), $2.37(\mathrm{~s}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 159.5,152.6,146.6,137.0$, $130.8,130.3,129.5,113.7,113.6,92.7,74.2,62.9,56.1,55.3,54.5,26.0,24.3$; HRMS (ESI+) calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 468.1030$, found 468.1021 .

4-(3-lodo-5-methoxy-4-((4-methoxybenzyl)oxy)benzyl)morpholine, S13

The product was prepared according to General Method H from 3-iodo-5-methoxy-4-((4-
 reaction was complete after 16 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $03: 7$ pentane / EtOAc) afforded the title compound (82 mg , $0.17 \mathrm{mmol}, 70 \%$) as a white solid; $\mathrm{R}_{f} 0.34$ (EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2997, 2955, 2909, 2834, 2808, 2361, 1612, 1587, 1561, 1513, 1460, 1410, 1371, 1348, 1331, 1302, 1267, 1248, 1221, 1174, $1143,1115,1069,1041,1008 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,152.7,146.9,136.0,130.8,130.3,129.4,113.7,113.6,92.8,74.3$, $67.0,62.5,56.1,55.3,53.6$; HRMS (ESI +) calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{INO}_{4}[\mathrm{M}+\mathrm{H}]+470.0823$, found 470.0819 .

1-(3-Methoxy-4-((4-methoxybenzyl)oxy)-5-(4-propylphenoxy)benzyl)piperidine, 33

The product was prepared according to General Method E(b) from 1-(3-iodo-5-methoxy-4-((4methoxybenzyl)oxy)benzyl)piperidine, $\mathbf{S 1 2}(30 \mathrm{mg}, 0.060 \mathrm{mmol})$ and 4-propylphenol, $\mathbf{S 7}$ (17 mg , $0.13 \mathrm{mmol})$. The reaction was complete after 48 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($17 \mathrm{mg}, 0.035 \mathrm{mmol}, 60 \%$) as a pale-yellow wax; $\mathrm{R}_{f} 0.25$ (EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.23(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.74$ $(\mathrm{s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H})$, $2.35(\mathrm{~s}, 4 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, 155.9, 154.0, 149.6, 136.7, 130.1, 129.9, 129.3, 117.2, 113.9, 113.5, 108.5, 74.7, 63.5, 56.2, 55.2, 54.4, 37.3, 25.9, 24.7, 24.3, 13.8; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 476.2795$, found 476.2795.

4-(3-Methoxy-4-((4-methoxybenzyl)oxy)-5-(4-propylphenoxy)benzyl)morpholine, 34

The product was prepared according to General Method $\mathrm{E}(\mathrm{b})$ from 4-(3-iodo-5-methoxy-4-((4methoxybenzyl)oxy)benzyl)morpholine, S13 (50 mg, 0.11 mmol) and 4-propylphenol, S7 ($29 \mu \mathrm{~L}$, $0.21 \mathrm{mmol})$. The reaction was complete after 48 h . Purification via column chromatography pre-washed with 1\% triethylamine in pentane (1:0 $0 \rightarrow 3: 7$ pentane / EtOAc) afforded the title compound ($30 \mathrm{mg}, 0.062 \mathrm{mmol}, 59 \%$) as a yellow wax; $\mathrm{R}_{f} 0.21$ (1:1 pentane / EtOAc); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=4.6 \mathrm{~Hz}$, $4 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,155.8,154.1,149.8,138.6,136.8,130.1,129.8,129.4,129.0,117.2$, $113.8,113.5,108.4,74.7,67.0,63.1,56.2,55.2,53.5,37.3,24.7,13.8$; HRMS (ESI+) calc. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 478.2588$, found 478.2589 .

Scheme 8: Synthetic routes to analogues 27 - 30. 2-Methoxy-4-propylphenol was prepared as previously published ${ }^{2}$.

4-(3-Methoxy-4-(3-methoxy-2-((4-methoxybenzyl)oxy)-5-(morpholinomethyl)phenoxy)benzyl) morpholine, 27

The product was prepared according to General Method E(b) from 4-(3-iodo-5-methoxy-4-((4methoxybenzyl)oxy)benzyl)morpholine, $\mathbf{S 1 3}(80 \mathrm{mg}, 0.17 \mathrm{mmol})$ and 2-methoxy-4(morpholinomethyl)phenol, $\mathbf{S 4}(60 \mathrm{mg}, 0.26 \mathrm{mmol})$. The reaction was complete after 96 h . Purification via column chromatography pre-washed with 1% triethylamine in EtOAc (1:0 $0 \rightarrow 9: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) afforded the title compound ($10 \mathrm{mg}, 0.018 \mathrm{mmol}, 11 \%$) as a colourless oil; $\mathrm{R}_{f} 0.2$ ($19: 1 \mathrm{EtOAc} / \mathrm{MeOH}$); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 2956, 2807, 2764, 1710, 1610, 1587, 1454, 1423, 1350, 1268, 1249, 1219, $1116,1092,1035 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{dd}, \mathrm{J}=6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{dd}, \mathrm{J}=$ $9.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.38$ (s, 2H), $2.45(\mathrm{~s}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,154.1,150.1,150.0,150.0,145.6$, 138.0, 130.0, 130.0, 121.6, 117.9, 113.6, 113.4, 113.3, 112.9, 108.2, 74.6, 67.0, 66.9, 63.2, 63.1, 56.2, 56.0, 55.3, 53.5, 53.5; HRMS (ESI+) calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 565.2908$, found 565.2907.

4-(3-Methoxy-5-(2-methoxy-4-propylphenoxy)-4-((4-methoxybenzyl)oxy)benzyl)morpholine, 28

The product was prepared according to General Method E(b) from 4-(3-iodo-5-methoxy-4-((4methoxybenzyl)oxy)benzyl)morpholine, $\mathbf{S 1 3}$ ($350 \mathrm{mg}, 0.745 \mathrm{mmol}$) and 2-methoxy-4-propylphenol ($238 \mu \mathrm{~L}, 1.49 \mathrm{mmol}$). The reaction was complete after 48 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $0 \rightarrow 1: 1$ pentane / EtOAc) afforded the title compound ($292 \mathrm{mg}, 0.575 \mathrm{mmol}, 77 \%$) as a colourless oil; $\mathrm{R}_{f} 0.36$ (EtOAc); IR (thin film, $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$) 2957, 2934, 2360, 2341, 1610, 1587, 1510, 1454, 1423, 1266, 1248, 1216, 1117, 1092, 1035, 982; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (dd, $J=8.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}$ $=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.3,154.0,150.6,150.2,144.0,138.5,137.7,133.4,130.2$, 130.1, 120.6, 118.9, 113.4, 113.0, 112.2, 107.7, 74.6, 67.0, 63.1, 56.2, 55.9, 55.2, 53.5, 37.8, 24.7, 13.8; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 508.2694$, found 508.2695.

2-Methoxy-6-(2-methoxy-4-propylphenoxy)-4-(morpholinomethyl)phenol, S14

The product was prepared according to General Method F from 4-(3-methoxy-5-(2-methoxy-4-propylphenoxy)-4-((4-methoxybenzyl)oxy)benzyl)morpholine 28 ($140 \mathrm{mg}, 0.276 \mathrm{mmol})$. The reaction was complete after 4 h. Purification via column chromatography pre-washed with 1% triethylamine in pentane ($4: 1 \rightarrow 0: 1$ pentane / EtOAc) afforded the title compound ($46 \mathrm{mg}, 0.12 \mathrm{mmol}, 43 \%$); $\mathrm{R}_{f} 0.18$ (EtOAc); IR (thin film, $v_{\max } / \mathrm{cm}^{-1}$) 2961, 2922, 2361, 2341, 1608, 1595, 1510, 1457, 1432, 1265, 1213, $1155,1116,1087,866 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (dd, J = 10.7, 2.0 Hz, 2H), $6.53(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{~s}$, $2 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=8.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 152.3,147.9,143.9,139.3,136.0,128.8,120.7,119.4,112.9,112.5,111.6$, 107.6, 67.0, 63.2, 56.3, 56.0, 53.5, 37.8, 24.6, 13.8; HRMS (ESI+) calc. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 388.2118$, found 388.2119.

4-(3-Methoxy-5-(2-methoxy-4-propylphenoxy)-4-((3,4,5-trimethoxybenzyl)oxy)benzyl)morpholine, 30

The product was prepared according to General Method D from 2-methoxy-6-(2-methoxy-4-propylphenoxy)-4-(morpholinomethyl)phenol, S14 ($20 \mathrm{mg}, 0.052 \mathrm{mmol}$) and 3,4,5-trimethoxybenzyl chloride ($13 \mathrm{mg}, 0.060 \mathrm{mmol}$). The reaction was complete after 18 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane ($1: 0 \rightarrow 2: 3$ pentane / EtOAc) afforded the title compound ($18 \mathrm{mg}, 0.033 \mathrm{mmol}, 61 \%$) as a colourless oil; $\mathrm{R}_{f} 0.15$ (EtOAc); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.46(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 2.55$ (dd, J = 8.6, 6.7 Hz, 2H), 2.38 (t, J = 4.7 Hz, 4H), 1.70-1.57 (m, 2H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.8,152.9,150.5,150.1,147.0,143.9,138.6,137.9,137.4,133.7,120.6,118.8$, $112.8,112.3,107.7,105.3,75.3,67.0,63.1,60.8,56.2,55.9,55.9,53.5,37.8,24.7,13.8$; HRMS (ESI+) calc. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+} 568.2905$, found 568.2900.

4-(3-Methoxy-5-(2-methoxy-4-propylphenoxy)-4-((4-(trifluoromethyl)benzyl)oxy)benzyl) morpholine, 29

The product was prepared according to General Method D from 2-methoxy-6-(2-methoxy-4-propylphenoxy)-4-(morpholinomethyl)phenol, S14 (20 mg, 0.052 mmol$)$ and 4-(trifluoromethyl)benzyl chloride ($9 \mu \mathrm{~L}, 0.060 \mathrm{mmol}$). The reaction was complete after 18 h . Purification via column chromatography pre-washed with 1% triethylamine in pentane (1:0 $0 \rightarrow 3: 1$ pentane / EtOAc) afforded the title compound ($13 \mathrm{mg}, 0.024 \mathrm{mmol}, 46 \%$) as a colourless oil; $\mathrm{R}_{f} 0.29$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.62(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=8.5,6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7$, $150.4,150.1,143.9,142.1,138.7,137.5,133.9,128.0,127.2,124.9,120.6,118.6,112.8,112.3,107.7$, $74.0,67.0,63.1,56.1,55.8,53.5,37.8,24.7,13.8$; HRMS (ESI+) calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 546.2462$, found 546.2455.

5. Copies of ${ }^{1} \mathrm{H}$ NMR spectra

6. References

1. G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou and D. Cao, Nucleic Acids Res., 2021, 49, W5-W14.
2. C. E. Sear, P. Pieper, M. Amaral, M. M. Romanelli, T. A. Costa-Silva, M. M. Haugland, J. A. Tate, J. H. G. Lago, A. G. Tempone and E. A. Anderson, ACS Infectious Diseases, 2020, 6, 2872-2878.
3. R. J. Yoder, Q. Zhuang, J. M. Beck, A. Franjesevic, T. G. Blanton, S. Sillart, T. Secor, L. Guerra, J. D. Brown, C. Reid, C. A. McElroy, Ö. Doğan Ekici, C. S. Callam and C. M. Hadad, ACS Med. Chem. Lett., 2017, 8, 622-627.
4. R. Nakamura, Y. Obora and Y. Ishii, Chem. Commun., 2008, DOI: 10.1039/B804055A, 34173419.
5. 2012.
1. K. V. Sivak, K. I. Stosman, A. A. Muzhikyan, A. G. Alexandrov, N. B. Viktorov, D. D. Vaulina and N. A. Gomzina, uss. J. Bioorg. Chem., 2019, 45, 425-429.
