Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Synthesis and anti-hepatocellular carcinoma evaluation of salicylic acid-

modified indole trimethoxy flavonoid derivatives

Yang Zou^{a,b}, Na Lu^c, Xiaoyan Yang^b, Zhizhong Xie^b, Xiaoyong Lei^b, Xingyun Liu^d, Yong Li^d, Sheng Huang^e, Guotao Tang^{b,*}, Zhe Wang^{a,*}

^aThe Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.

^bInstitute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medicial School, Hengyang, Hunan, 421001, China.

^cSchool of Nursing, Hengyang Medicial School, University of South China, Hengyang, Hunan, 421001, China.

^dThe Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

^eJiuzhitang Co., Ltd, Changsha, Hunan, 410007, China.

*Corresponding authors: Email: wangz1525@163.com (Z Wang), tgtzq@163.com(G Tang).

Table of Contents

Figure S1-S15	¹ H-NMR spectrums of compounds 6, 7, 8a–8g and 9a–9f3
Figure S16-S27.	¹³ C-NMR spectrums of compounds 6 , 7 , 8a–8g and 9c , 9e , 9f 10
Figure S28-S42.	HRMS spectrums of compounds 6, 7, 8a–8g and 9a–9f

Figure S1. ¹H-NMR (400 MHz) spectrum of compound 6 in CDCl₃.

Figure S2. ¹H-NMR (400 MHz) spectrum of compound 7 in CDCl₃.

Figure S3. ¹H-NMR (400 MHz) spectrum of compound 8a in CDCl₃.

Figure S4. ¹H-NMR (400 MHz) spectrum of compound 8b in CDCl₃.

Figure S5. ¹H-NMR (400 MHz) spectrum of compound 8c in CDCl₃.

Figure S6. ¹H-NMR (400 MHz) spectrum of compound 8d in CDCl₃.

Figure S7. ¹H-NMR (400 MHz) spectrum of compound 8e in CDCl₃.

Figure S8. ¹H-NMR (400 MHz) spectrum of compound 8f in CDCl₃.

Figure S9. ¹H-NMR (400 MHz) spectrum of compound 8g in CDCl₃.

Figure S10. ¹H-NMR (400 MHz) spectrum of compound 9a in CDCl₃.

Figure S11. ¹H-NMR (400 MHz) spectrum of compound 9b in CDCl₃.

Figure S12. ¹H-NMR (400 MHz) spectrum of compound 9c in CDCl₃.

Figure S13. ¹H-NMR (400 MHz) spectrum of compound 9d in CDCl₃.

Figure S14. ¹H-NMR (400 MHz) spectrum of compound 9e in CDCl₃.

Figure S15. ¹H-NMR (400 MHz) spectrum of compound 9f in CDCl₃.

Figure S16. ¹³C-NMR (125 MHz) spectrum of compound 6 in DMSO-*d*₆.

Figure S17. ¹³C-NMR (125 MHz) spectrum of compound 7 in DMSO-*d*₆.

Figure S18. ¹³C-NMR (125 MHz) spectrum of compound 8a in CDCl₃.

Figure S19. ¹³C-NMR (125 MHz) spectrum of compound 8b in CDCl₃.

Figure S20. ¹³C-NMR (125 MHz) spectrum of compound 8c in CDCl₃.

Figure S21. ¹³C-NMR (125 MHz) spectrum of compound 8d in CDCl₃.

Figure S22. ¹³C-NMR (125 MHz) spectrum of compound 8e in CDCl₃.

Figure S23. ¹³C-NMR (125 MHz) spectrum of compound 8f in CDCl₃.

Figure S24. ¹³C-NMR (125 MHz) spectrum of compound 8g in CDCl₃.

Figure S25. ¹³C-NMR (125 MHz) spectrum of compound 9c in CDCl₃.

Figure S26. ¹³C-NMR (125 MHz) spectrum of compound 9e in CDCl₃.

Figure S27. ¹³C-NMR (125 MHz) spectrum of compound 9f in CDCl₃.

Figure S28. HRMS spectrum of compound 6.

100-

%

0

Minimum

Maximum:

Mass 352.1188

Calc. Mass 352.1185

mDa 0.3

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron lons 99 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 20-20 H: 18-18 N: 0-5 O: 0-200 2 0312-2-2a 190 (1.069) 1: TOF MS ES+ 9.65e+006 352.1188 353.1204 322.0701 352.0341 437.2032 276.0586294.0739 454.0387 477.2359 m/z 243.8842 260 340 360 420 440 320 280 400 240 300 460 480 50.0 5.0 3.0

Conf(%) Formula n/a C20 H18 N 05

Figure S29. HRMS spectrum of compound 7.

DBE

12.5

i-FIT Norm 1192.8 n/a

Norm

PPM 0.9

Figure S30. HRMS spectrum of compound 8a.

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Figure S31. HRMS spectrum of compound 8b.

Figure S32. HRMS spectrum of compound 8c.

Single Mass Analysis

Page 1

Tolerance Element pr Number of	= 3.0 PPM rediction: C isotope pe	/ DBE Off aks used	E: min = -1. d for i-FIT =	5, max = 5 = 3	0.0						
Monoisotop 707 formula Elements U	ic Mass, Eve (e) evaluate sed:	en Electro d with 1 r	on lons results within	limits (up to	o 50 best i	sotopic	matches f	or each ma	iss)		
C: 28-28 2 0312-2-1e 24	H: 23-23 14 (1.368)	N: U-7	0: 0-200	CI: U-3							1: TOF MS ES+ 7 54e+006
100 % 0 420	31.0780 44 11000000000000000000000000000000000	9.0598 463 111111111111111111111111111111111111	. <u>8188</u> 471.82 	¹⁸ 493.4729	520.037 520.037 5510 5	522.11 523.1 520 53	143 168 542. 	0975 558.0 1)11111111111111111111111111111111111	792 1010-1011-1011-1011-101-101-101-101-101	<u>604.0702609.33</u> 1911 - 1912 - 1911 -	83 624 0321 mmmmmmmm m/z 620 630
Minimum: Maximum:		5.0	-1.1 3.0 50.0	5 D							
Mass 520.1168	Calc. Mass 520.1163	mDa 0.5	PPM DBE 1.0 17.5	i-FIT 1034.2	Norm C n/a n	Conf(%) i/a	Formula C28 H23 N	07 Cl			

Figure S33. HRMS spectrum of compound 8d.

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 185 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 29-29 H: 26-26 N: 0-7 O: 0-200 2 0312-2-1g 232 (1.297)

100 - - - - - - - - - -						500.1	712						
	9.2381 408	3.0629 4: 400	31.0946 	449.067	2 460 4	500.0915 500 500	501.1735 522.1	521 ₅₃₈	.1298	<u>584.1117</u> 580	<u>609.3278</u> 600 620	<u>641.1182</u> 640	674.0056 660 680
Minimum: Maximum:		5.0	3.0	-1.5 50.0									
Mass 500.1712	Calc. Mass 500.1709	s mDa 0.3	PPM 0.6	DBE 17.5	i-FIT 1044.0	Norm n/a	Conf(%) n/a	Formula C29 H26	N 07				

Figure S35. HRMS spectrum of compound 8f.

Figure S36. HRMS spectrum of compound 8g.

Page 1

1: TOF MS ES+ 8.18e+006

Single M Tolerance Element p Number o	a = 10.0 PPM rediction: O f isotope pe	r sis // / DE ff aks use	3E: min = d for i-FIT	-1.5, max = ⁻ = 3	50.0						
Monoisotop 21 formula Elements U C: 28-28 M 0138-3-135-	oic Mass, Eve (e) evaluated Jsed: H: 24-24 1-2b 291 (1.62	en Electro with 1 re N: 0-5	on lons esults within O: 0-8	n limits (up to	50 best	isotopic r	natches for e	ach mass)		1: TOF	MS ES+
100						486.	1552 504 487.1589	8.1374		8.	62e+005
0	406.3379 413 401 400 410	0.2754) 420	437.18 430 44	52 449.06 ⁻ 52 449.06 ⁻ 54 450 4	19 700070000 60 470	486.0975	488.1613 490 500	509.1397 510 520	524.1113 537.535 530 540	8 565.5534 5 	571.7473 Turn m/Z
Minimum: Maximum:		5.0	-1 10.0 50	. 5 . 0							
Mass 486.1552	Calc. Mass 486.1553	mDa -0.1	PPM DE -0.2 17	E i-FIT .5 719.9	Norm n/a	Conf(%) n/a	Formula C28 H24 N O	7			

Figure S37. HRMS spectrum of compound 9a.

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 154 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 28-28 H: 23-23 N: 0-5 O: 0-8 Br: 0-3 C

Figure S39. HRMS spectrum of compound 9c.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 50 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 28-28 H: 23-23 N: 0-5 O: 0-8 CI: 0-1 0138-3-135-1-2f 317 (1.767) 1: TOF MS ES+ 1.84e+005 520.1163 100-% 542.0977 544.0992 519.1078 632.0958 519.2339 384.3411406.3340414.9443437.2024 476.3356 360 380 400 420 440 460 480 500 565.5698 610.1784 632.0958 565.5698 610.1784 632.0958 560 580 600 620 640 660 610.1784 684.1967 m/z 0-540 680 520 Minimum: Maximum: 10.0 50.0 5.0 Mass 520.1163 Calc. Mass 520.1163 i-FIT 598.6 Conf(%) Formula n/a C28 H23 N 07 Cl mDa PPM DBE Norm 0.0 0.0 17.5 n/a

Figure S41. HRMS spectrum of compound 9e.

