Supporting Information

Bioorthogonal activation of prodrugs, for the potential treatment of breast cancer, using the Staudinger reaction

Madonna M. A. Mitry ^{a,b}, Samuel Y Boateng ^c, Francesca Greco ^{a*}, Helen M.I. Osborn ^{a*}

^a Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD. UK

^b Dept. of Pharmaceutical chemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt

^c School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK

*Corresponding author, E-mail: <u>h.m.i.osborn@reading.ac.uk</u>, f.greco@reading.ac.uk

Table of contents

Chromatograms of 9-azido sialic acid 4 with DOX prodrug 12 and N-Mustard prodrug	
10	2
Viability of MCF-7 cells and L929 cells after treatment with Ac $_4$ ManNAz, 4 or 5	2
IC ₅₀ of DOX prodrug 12 and <i>N</i> -Mustard prodrug 10 against MCF-7 cells and L929 cells	3
Confocal microscopy images of untreated, Ac ₄ ManNAz, 4 and 5 -treated MCF-7 cells	4
¹ H, ¹³ C and ³¹ P NMR spectra	6
HPLC traces analysis of compounds 4, 5, 10 and 12	17

Figure *S1*: a) HPLC chromatograph of doxorubicin **11** release from prodrug **12** by 9-azido sialic acid **4** at 37 C° in aqueous MeCN (1:1) as a function of time. b) HPLC chromatogram of *N*-Mustard release from prodrug **10** by 9-azido sialic acid **4** at 37 C° in aqueous MeCN (1:1) as a function of time. Legend: *: azido-sialic acid **4**; •: Dox prodrug **12**; 0: Dox **11**; **x**: phosphine-oxide ligation product; ◊: *N*-Mustard prodrug **10**.

Figure S2: a) Viability of MCF-7 cells after incubation with Ac₄ManNAz, **4** or **5** at various concentrations (1-100 μ M) determined by the MTT assay. b) Viability of L929 cells after incubation with 50 μ M Ac₄ManNAz, **4** or **5** determined by the MTT assay. Data are presented as mean ± SEM (n = 3).

Figure S3: a) Determined IC_{50} for Dox prodrug **12** activation against **4**, **5** and $Ac_4ManNAz$ -engineered MCF-7 cells. b) Determined IC_{50} for *N*-Mustard prodrug **10** activation against **4**, **5** and $Ac_4ManNAz$ -engineered MCF-7 cells. c) Determined IC_{50} of Dox **11** and Dox prodrug **12** against MCF-7 cells and L929 cells. d) Determined IC_{50} of *N*-Mustard prodrug **10** against MCF-7 cells and L929 cells. e) Determined IC_{50} for Dox prodrug **12** activation against **4**, **5** and $Ac_4ManNAz$ -engineered L929 cells. f) Determined IC_{50} for *N*-Mustard prodrug **10** activation against **4**, **5** and $Ac_4ManNAz$ -engineered L929 cells. f) Determined IC_{50} for *N*-Mustard prodrug **10** activation against **4**, **5** and $Ac_4ManNAz$ -engineered L929 cells. f) Determined IC_{50} for *N*-Mustard prodrug **10** activation against **4**, **5** and $Ac_4ManNAz$ -engineered L929 cells. f) Determined IC_{50} for *N*-Mustard prodrug **10** activation against **4**, **5** and $Ac_4ManNAz$ -engineered L929 cells. f)

Figure S4: Confocal fluorescence microscopy images of Ac₄ManNAz, **4**, **5**-treated and untreated control breast cancer cells (MCF-7) (50 μ M for 72 h). Arrows indicate higher fluorescence at cell membranes and cell membrane junctions between cells.

¹H and ¹³C NMR Spectra

 ^1H NMR spectrum (400 MHz, D2O) of compound $\boldsymbol{2}$

 ^{13}C NMR spectrum (100 MHz, D2O) of compound $\boldsymbol{2}$

 ^1H NMR spectrum (400 MHz, D_2O) of compound $\boldsymbol{3}$

 $^{\rm 13}C$ NMR spectrum (100 MHz, D_2O) of compound ${\bf 3}$

¹H NMR spectrum (400 MHz, D₂O) of compound **4**

 ^{13}C NMR spectrum (100 MHz, D₂O) of compound **4**

¹H NMR spectrum (400 MHz, D_2O) of compound **5**

 $^{\rm 13}C$ NMR spectrum (100 MHz, $D_2O)$ of compound ${\bf 5}$

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **7**

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound **7**

¹H NMR spectrum (400 MHz, DMSO- d_6) of compound **8**

 ^{13}C NMR spectrum (100 MHz, CDCl_3) of compound ${\bf 8}$

¹H NMR spectrum (400 MHz, DMSO- d_6) of compound **9**

 ^{13}C NMR spectrum (100 MHz, DMSO- $d_6)$ of compound ${\bf 9}$

¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound **10**

¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of compound **10**

 ^{31}P NMR spectrum (162 MHz, DMSO- $d_6)$ of compound 10

¹H NMR spectrum (700 MHz, DMSO-*d*₆) of compound **12**

¹³C NMR spectrum (176 MHz, DMSO-*d*₆) of compound **12**

 ^{31}P NMR spectrum (162 MHz, DMSO- $d_6)$ of compound 12

HPLC traces of final compounds 4, 5, 10 and 12

The HPLC trace of compound 4

The HPLC trace of compound 5

The HPLC trace of compound 10

The HPLC trace of compound 12