ARTICLE

Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Maryna Saayman,^a Christina Kannigadu,^a Janine Aucamp,^a Helena D. Janse van Rensburg,^a Moegamat C. Joseph^b, Andrew J. Swarts^b, David D. N'Da^{*}

Supplementary Information

^a Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.

^b Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg-Braamfontein 2050, South Africa.

*Corresponding author. Tel.: +27 18 299 2256; Fax: +27 18 299 4243; E-mail address: David.Nda@nwu.ac.za.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

APPENDIX A: CHEMICAL CHARACTERIZATION

(E)-Benzylidenehydrazine (1)

¹H NMR in DMSO

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

ARTICLE

IR Spectrum

Dark yellow powder; yield: 565 mg (47%); mp 88-90 °C; IR _{Vmax} (cm⁻¹): 2921 (N-H), 2851 (C-H), 1649 (C=C); ¹H NMR (600 MHz, DMSO) δ 8.72 (s, 1H, H-2), 8.89 (dd, *J* = 7.6, 1.8 Hz, 2H, H-4), 7.53 (dd, *J* = 13.1, 5.8 Hz, 3H, H-5/6), 6.62 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 161.21 (C-2), 133.73 (C-3), 131.23 (C-6), 128.80 (C-4), 128.25 (C-5).

(E)-(4-Fluorobenzylidene)hydrazine (2)

¹H NMR in DMSO

Light yellow powder; yield: 857 mg (62%); mp 181-183 °C; IR $_{Vmax}$ (cm⁻¹): 3324 (N-H), 2924 (C-H), 1596 (C=C), 1220 (C-F); ¹H NMR (600 MHz, DMSO) δ 7.70 (s, 1H, H-2), 7.50 (dd, J_{H-F} = 8.6, 5.8 Hz, 2H, H-4), 7.14 (t, J_{H-F} = 8.6 Hz, 2H, H-5), 6.70 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 161.44 (d, ¹ J_{C-F} = 244.0 Hz, C-6), 137.11 (C-2), 132.92 (d, ² J_{C-F} = 3.0 Hz, C-3), 126.81 (d, ³ J_{C-F} = 8.0 Hz, C-4), 115.26 (d, ⁴ J_{C-F} = 21.7 Hz, C-5).

(E)-(4-Chlorobenzylidene)hydrazine (3)

¹H NMR in DMSO

Yellow powder; yield: 1.0 g (65%); mp 196-198 °C; IR _{Vmax} (cm⁻¹): 3315 (N-H), 2933 (C-H), 1590 (C=C), 815 (C-Cl); ¹H NMR (600 MHz, DMSO) δ 8.72 (s, 1H, H-2), 7.90 (d, *J* = 8.5 Hz, 2H, H-4), 7.59 (d, *J* = 8.5 Hz, 2H, H-5), 6.62 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 160.56 (C-2), 136.01 (C-6), 132.59 (C-3), 130.01 (C-4), 129.08 (C-5).

(E)-(4-Bromobenzylidene)hydrazine (4)

¹H NMR in DMSO

White crystal-like powder; yield: 1.2 g (61%); mp 72-74 °C; IR _{Vmax} (cm⁻¹): 3353 (N-H), 2912 (C-H), 1588 (C=C), 507 (C-Br); ¹H NMR (600 MHz, DMSO) δ 7.65 (s, 1H, H-2), 7.50 (d, *J* = 8.5 Hz, 2H, H-4), 7.41 (d, *J* = 8.5 Hz, 2H, H-5), 6.91 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 136.53 (C-2), 135.76 (C-3), 131.36 (C-5), 126.91 (C-4), 119.97 (C-6).

(E)-(4-Methylbenzylidene)hydrazine (5)

¹H NMR in DMSO

Journal Name

Yellow powder; yield: 1.14 g (85%); mp 150-152 °C; IR _{Vmax} (cm⁻¹): 3316 (N-H), 2915 (C-H), 1612 (C=C); ¹H NMR (600 MHz, DMSO) δ 7.66 (s, 1H, H-2), 7.36 (d, *J* = 8.0 Hz, 2H, H-4), 7.13 (d, *J* = 8.0 Hz, 2H, H-5), 6.62 (s, 2H, H-1), 2.28 (s, 3H, H-7). ¹³C NMR (151 MHz, DMSO) δ 138.56 (C-2), 136.61 (C-6), 133.59 (C-3), 128.96 (C-5), 125.06 (C-4), 20.72 (C-7).

Journal Name

(E)-(4-Methoxybenzylidene)hydrazine (6)

¹H NMR in DMSO

Light yellow powder; yield: 1.0 g (67%); mp 170-172 °C; IR _{Vmax} (cm⁻¹): 2927 (N-H), 2836 (C-H), 1595 (C=C); ¹H NMR (600 MHz, DMSO) δ 8.63 (s, 1H, H-2), 7.81 (d, *J* = 8.7 Hz, 2H, H-4), 7.05 (d, *J* = 8.7 Hz, 2H, H-5), 6.62 (s, 2H, H-1), 3.83 (s, 3H, H-7). ¹³C NMR (151 MHz, DMSO) δ 161.65 (C-6), 160.45 (C-2), 129.95 (C-4), 126.55 (C-3), 114.38 (C-5), 55.37 (C-7).

Journal Name

(E)-(4-(Benzyloxy)benzylidene)hydrazine (7)

¹H NMR in DMSO

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

White powder; yield: 1.9 g (84%); mp.125-127 °C; IR _{Vmax} (cm⁻¹): 3314 (N-H), 3031 (C-H), 1597 (C=C), 1236 (C-O); ¹H NMR (600 MHz, DMSO) δ 7.66 (s, 1H, H-2), 7.44 (d, *J* = 8.7 Hz, 2H, H-4), 7.41 (d, *J* = 8.5 Hz, 2H, H-9), 7.38 (d, *J* = 8.5 Hz, 2H, H-10), 7.32 (t, *J* = 7.3 Hz, 1H, H-11), 6.98 (d, *J* = 8.7 Hz, 2H, H-5), 6.48 (s, 2H, H-1), 5.10 (s, 2H, H-7). ¹³C NMR (151 MHz, DMSO) δ 157.91 (C-6), 138.58 (C-2), 136.98 (C-8), 129.26 (C-4), 128.32 (C-10), 127.71 (C-3), 127.55 (C-9), 126.42 (C-11), 114.84 (C-5), 69.20 (C-7).

(E)-4-(Hydrazonomethyl)phenol (8)

¹H NMR in DMSO

ARTICLE

IR Spectrum

Yellow powder; yield: 967 mg (71%); mp 275-277 °C; IR _{Vmax} (cm⁻¹): 3315 (O-H), 2939 (N-H), 2750 (C-H), 1585 (C=C); ¹H NMR (600 MHz, DMSO) δ 9.99 (s, 1H, H-7), 8.54 (s, 1H, H-2), 7.68 (d, *J* = 8.5 Hz, 2H, H-4), 6.86 (d, *J* = 8.5 Hz, 2H, H-5), 6.62 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 160.16 (C-6), 129.96 (C-4), 126.56 (C-3), 125.05 (C-2), 115.66 (C-5).

Journal Name

(E)-(4-Nitrobenzylidene)hydrazine (9)

¹H NMR in DMSO

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

Bright yellow powder; yield: 1.5 g (91%); mp 134-136 °C; IR _{Vmax} (cm⁻¹): 3419 (N-H), 3064 (C-H), 1572 (C=C), 1499 (N-O); ¹H NMR (600 MHz, DMSO) δ 8.16 (d, *J* = 8.9 Hz, 2H, H-5), 7.73 (s, 1H, H-2), 7.67 (d, *J* = 8.9 Hz, 2H, H-4), 7.55 (s, 2H, H-1). ¹³C NMR (151 MHz, DMSO) δ 145.62 (C-6), 143.48 (C-2), 134.15 (C-3), 125.29 (C-4), 123.98 (C-5).

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

HRMS

This journal is © The Royal Society of Chemistry 20xx

4-{(E)-{(E)-[(5-Nitrofuran-2-yl)methylene]hydrazono}methyl}phenol (8a)

¹H NMR in DMSO

HRMS

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

IR Spectrum

80 75 Transmittance [%] 2 C 65 C-H C=N 60 02 55 N-O 2919.53 · 2851.38 · 1531.74 1498.29 609.17 1431.67 327.32 49 1275.84 1115.51 39 807.50 771.60 720.82 513.85 481.32 937.43 870.19 582.73 1200.1 032. 2500 3500 3000 2000 1500 1000 500

Wavenumber cm-1

HRMS

This journal is © The Royal Society of Chemistry 20xx

(1E,2E)-1-(4-Methoxybenzylidene)-2-[(5-nitrothiophen-2-yl)methylene]hydrazine (6b)

¹H NMR in DMSO

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

(1E,2E)-1-[4-(Benzyloxy)benzylidene]-2-[(5-nitrothiophen-2-yl)methylene]hydrazine (7b)

¹H NMR in DMSO

HRMS

This journal is © The Royal Society of Chemistry 20xx

4-(E)-(E)-[(5-Nitrothiophen-2-yl)methylene]hydrazonomethylphenol (8b)

¹H NMR in DMSO

(E)-1-[(E)-4-(Benzyloxy)benzylidene]-2-(furan-2-ylmethylene)hydrazine (11)

¹H NMR in DMSO

¹³C NMR

(E)-1-(Furan-2-ylmethylene)-2-[(E)-4-nitrobenzylidene]hydrazine (12)

¹H NMR in DMSO

¹³C NMR in DMSO

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

ARTICLE

IR Spectrum

APPENDIX B: IN SILICO PROPERTIES AND DATA

The physiochemical properties and subsequent absorption, distribution, metabolism, and excretion (collectively referred to as ADME) as well as drug-likeness and medicinal chemistry friendliness of test compounds were computed via the SwissADME web tool (*http://www.swissadme.ch*) [1]. The results are summarised below.

Table A1. Physiochemical properties of nitrofuranylazines

	Physiochemical properties									Wat solub	er ilitv
Compd.	Chemical formula	Molecular weight	Fraction Csp3	Num. rotatable bonds	Num. H-bond acceptors	Num. H-bond donors	Molar refractivity	TPSA (Ų)ª	LogP _{o/w} (MLogP) ^b	LogS (ESOL) ^d	LogS (Ali) ^e
NFA	$C_5H_3NO_4$	141.08	0	2	4	0	32.92	76.03	-0.93	-1.59	-2.2
1a	$C_{12}H_9N_3O_3$	243.22	0	4	5	0	69.16	83.68	1.83	-2.77	- 3.34
2a	$C_{12}H_8FN_3O_3$	261.21	0	4	6	0	69.12	83.68	1.42	-2.92	- 3.45
3 a	$C_{12}H_8CIN_3O_3$	277.66	0	4	5	0	74.17	83.68	1.56	-3.35	- 3.99
4a	$C_{12}H_8BrN_3O_3$	322.11	0	4	5	0	76.86	83.68	1.69	-3.67	- 4.06
5a	$C_{13}H_{11}N_3O_3$	257.24	0.08	4	5	0	74.13	83.68	1.29	-3.06	- 3.72
6a	$C_{13}H_{11}N_3O_4$	273.24	0.08	5	6	0	75.65	92.91	0.76	-2.83	- 3.51
7a	$C_{19}H_{15}N_3O_4$	349.34	0.05	7	6	0	100.14	92.91	2.84	-4.75	- 5.99
8a	$C_{12}H_9N_3O_4$	259.22	0	4	6	1	71.18	103.91	0.49	-2.62	- 3.39
9a	$C_{12}H_8N_4O_5$	288.22	0	5	7	0	77.98	129.5	0.88	-2.81	- 4.12
NTA	C₅H₃NO₃S	157.15	0	2	3	0	38.53	91.13	-0.91	-2.04	- 3.08
1b	$C_{12}H_9N_3O_2S$	259.28	0	4	4	0	74.77	98.78	1.83	-3.82	- 5.23
2b	$C_{12}H_8FN_3O_2S$	277.27	0	4	5	0	74.73	98.78	1.43	-3.97	- 5.33
3b	$C_{12}H_8CIN_3O_2S$	293.73	0	4	4	0	79.78	98.78	1.56	-4.41	- 5.88
4b	$C_{12}H_8BrN_3O_2S$	338.18	0	4	4	0	82.47	98.78	1.69	-4.72	- 5.94
5b	$C_{13}H_{11}N_{3}O_{2}S$	273.31	0.08	4	4	0	79.74	98.78	1.29	-4.12	- 5.61
6b	$C_{13}H_{11}N_3O_3S$	289.31	0.08	5	5	0	81.26	108.01	0.75	-3.88	- 5.39
7b	$C_{19}H_{15}N_3O_3S$	365.41	0.05	7	5	0	105.75	108.01	2.83	-5.24	- 6.95
8b	$C_{12}H_9N_3O_3S$	275.28	0	4	5	1	76.79	119.01	0.48	-3.68	- 5.29
9b	$C_{12}H_8N_4O_4S$	304.28	0	5	6	0	83.59	144.6	0.84	-3.86	- 6.01
NFX	$C_{12}H_9N_3O_5$	275.22	0	5	6	2	70.72	120.65	0.37	-2.95	- 4.27
FZD	$C_8H_7N_3O_5$	225.16	0.25	3	6	0	56.97	100.86	-0.31	-1.24	- 1.62
NFZ	$C_6H_6N_4O_4$	198.14	0	4	5	2	47.09	126.44	-1	-1.21	- 2.45
NFT	C ₈ H ₆ N ₄ O ₅	238.16	0.12	3	6	1	62.8	120.73	-0.76	-1.04	-1.6

^aTopological Polar Surface Area (TPSA, Å): Calculated from [2]; ^bMLogP_{o/w}: Topological method implemented from [3-5]; ^cLogS scale: insoluble < -10 < poorly < -6 < moderately < -4 < soluble < -2 < very < 0 < highly; ^dLogS (ESOL): Topological method implemented from [6]; ^eLogS (Ali): Topological method implemented from [7]

Table A2. Pharmacokinetic properties of nitrofuranylazines

	Pharmacokinetic properties										
Compd.	GI absorption	BBB permeation	Pgp substrate	CYP1A2 inhibitor	CYP2C19 inhibitor	CYP2C9 inhibitor	CYP2D6 inhibitor	CYP3A4 inhibitor			
NFA	High	No	No	Yes	Yes	No	No	No			
1a	High	No	No	Yes	Yes	Yes	No	No			
2a	High	No	No	No	No	No	No	No			
3a	High	No	No	No	No	No	No	No			
4a	High	No	No	No	No	No	No	No			
5a	High	No	No	Yes	Yes	Yes	No	No			
6a	High	No	No	Yes	Yes	No	No	No			
7a	High	No	No	Yes	Yes	Yes	No	No			
8a	High	No	No	Yes	Yes	Yes	No	No			
9a	High	No	No	Yes	Yes	Yes	No	No			
NTA	High	No	No	Yes	Yes	Yes	No	No			
1b	High	No	No	No	Yes	Yes	No	No			
2b	High	No	No	Yes	Yes	Yes	No	No			
3b	Low	No	No	Yes	Yes	Yes	No	No			
4b	High	No	No	No	No	No	No	No			
5b	High	No	No	No	No	No	No	No			
6b	High	No	No	No	No	No	No	No			
7b	High	No	No	Yes	Yes	No	No	No			
8b	High	No	No	No	No	No	No	No			
9b	High	No	No	Yes	Yes	Yes	No	No			
NFX	High	No	No	No	No	No	No	No			
FZD	High	No	No	No	No	No	No	No			
NFZ	High	No	No	No	No	No	No	No			
NFT	High	No	No	Yes	Yes	Yes	No	No			

ARTICLE

Table A3. Drug-likeness and medicinal chemistry friendliness of nitrofuranylazines

			Drug	Medicinal chemistry friendliness					
Compd.			Num.	Num. violations					
	Lipinskiª	Ghose ^b	Veber	Egan ^d	Muegge ^e	Bioavailability score ^f	PAINS ^g	Brenk ^h	Lead-likeness ⁱ
NFA	0	3 (MW<160, MR<40, #atoms<20)	0	0	1 (MW<200)	0.55	0	2 (aldehyde, nitro group)	1 (MW<250)
1a	0	0	0	0	0	0.55	0	2 (azine, nitro group)	1 (MW<250)
2a	0	0	0	0	0	0.55	0	2 (azine, nitro group) 2	0
3a	0	0	0	0	0	0.55	0	(azine, nitro group) 2	0
4a	0	0	0	0	0	0.55	0	(azine, nitro group) 2	0
5a	0	0	0	0	0	0.55	0	(azine, nitro group) 2	0
6a	0	0	0	0	0	0.55	0	(azine, nitro group) 2	0
7a	0	0	0	0	0	0.55	0	(azine, nitro group) 2	1 (XLOGP3>3.5)
8a	0	0	0	0	0	0.55	(azine phenol)	azine, nitro group) 2	0
9a	0	0	0	0	0	0.55	0	(azine, nitro group)	0
NTA	0	(MW<160, MR<40, #atoms<20)	0	0	1 (MW<200)	0.55	0	2 (aldehyde, nitro group) 2	1 (MW<250)
1b	0	0	0	0	0	0.55	0	(azine, nitro group)	0
2b	0	0	0	0	0	0.55	0	z (azine, nitro group)	1 (XLOGP3>3.5)
3b	0	0	0	0	0	0.55	0	azine, nitro group)	1 (XLOGP3>3.5)
4b	0	0	0	0	0	0.55	0	azine, nitro group)	1 (XLOGP3>3.5)
5b	0	0	0	0	0	0.55	0	(azine, nitro group)	1 (XLOGP3>3.5)
6b	0	0	0	0	0	0.55	0	azine, nitro group)	0
7b	0	0	0	0	0	0.55	0	ے (azine, nitro group) ع	2 (MW>350, XLOGP3>3.5)
8b	0	0	0	0	0	0.55	(hydrazone phenol)	ے (azine, nitro group) ع	0
9b	0	0	1 (TPSA>140)	1 (TPSA>131.6)	0	0.55	0	ے (azine, nitro group)	0
NFX	0	0	0	0	0	0.55	0	2	0

62 | Saayman et al., 2023, **00**, 1-3

Journal Na	ame								ARTICLE
								(imine, nitro group) 2	
FZD	0	0	0	0	0	0.55	0	(imine, nitro group) 2	1 (MW<250)
NFZ	0	0	0	0	1	0.55	0	(imine, nitro group) 3	1 (MW<250)
NFT	0	0	0	0	0	0.55	0	(hydantoin, imine, nitro group))	1 (MW<250)

^aLipinski: MW < 500, MLOGP < 4.15, N or O < 10, NH or OH < 5 [8]; ^bGhose: 160 < MW < 480, -04 < WLOGP < 5.6, 40 < MR < 130, 20 < atoms < 70 [9]; ^cVeber: Num. rotatable bonds < 10, TPSA < 140 [10]; ^dEgan: WLOGP < 5.88, TPSA < 131.6 [11]; ^eMuegge: 200 < MW < 600, -2 < XLOGP < 5, TPSA < 150, num. rings < 7, num. carbon > 4, num. heteroatoms > 1, num. rotatable bonds < 15, num. H-bond acceptors < 10, num. H-bond donors < 5 [12]; ^fThe probability that a compound will have > 10% bioavailability in rat or measurable Caco-2 permeability [13]; ^gPan ssay interference structures (PAINS) [14]; ^hBrenk: structural alert [15]; ⁱLead-likeness: 250 < MW < 350, XLOGP3 < 3.5, num. rotatable bonds < 7 [16]. One violation of a rule is allowed.

Journal Name

Journal Name

Journal Name

Please do not adjust margins

Figure B2. Nitrofuranylazines which are not substrates for Pgp (PGP-) are represented by the red circles. The white region is for high probability of passive absorption by the gastrointestinal tract (HIA), and the yellow region (yolk) is for high probability of brain penetration (BBB). White and yellow (yolk) regions are not mutually exclusive.

ARTICLE

References

- 1. Daina, A., O. Michielin, and V. Zoete, *SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.* Scientific reports, 2017. **7**(1): p. 42717.
- Ertl, P., B. Rohde, and P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry, 2000.
 43(20): p. 3714-3717.
- 3. Moriguchi, I., et al., *Simple method of calculating octanol/water partition coefficient*. Chemical and pharmaceutical bulletin, 1992. **40**(1): p. 127-130.
- 4. Moriguchi, I., et al., *Comparison of reliability of log P values for drugs calculated by several methods.* Chemical and pharmaceutical bulletin, 1994. **42**(4): p. 976-978.
- 5. Lipnski, C., et al., *Experimental and computational approach to estimate solubility and permeability in drug discovery and development setting.* Adv Drug Deliver Rev, 2001. **1**: p. 3-26.
- 6. Delaney, J.S., *ESOL: estimating aqueous solubility directly from molecular structure.* Journal of chemical information and computer sciences, 2004. **44**(3): p. 1000-1005.
- 7. Ali, J., et al., *Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area.* Journal of chemical information and modeling, 2012. **52**(2): p. 420-428.
- 8. Lipinski, C.A., et al., *Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.* Advanced drug delivery reviews, 1997. **23**(1-3): p. 3-25.
- 9. Ghose, A.K., V.N. Viswanadhan, and J.J. Wendoloski, *A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery.* 1. *A qualitative and quantitative characterization of known drug databases.* Journal of combinatorial chemistry, 1999. **1**(1): p. 55-68.
- 10. Veber, D.F., et al., *Molecular properties that influence the oral bioavailability of drug candidates.* Journal of medicinal chemistry, 2002. **45**(12): p. 2615-2623.
- 11. Egan, W.J., K.M. Merz, and J.J. Baldwin, *Prediction of drug absorption using multivariate statistics*. Journal of medicinal chemistry, 2000. **43**(21): p. 3867-3877.
- 12. Muegge, I., S.L. Heald, and D. Brittelli, *Simple selection criteria for drug-like chemical matter*. Journal of medicinal chemistry, 2001. **44**(12): p. 1841-1846.
- 13. Martin, Y.C., *A bioavailability score*. Journal of medicinal chemistry, 2005. **48**(9): p. 3164-3170.
- 14. Baell, J.B. and G.A. Holloway, *New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.* Journal of medicinal chemistry, 2010. **53**(7): p. 2719-2740.
- 15. Brenk, R., et al., *Lessons learnt from assembling screening libraries for drug discovery for neglected diseases.* ChemMedChem: Chemistry Enabling Drug Discovery, 2008. **3**(3): p. 435-444.
- 16. Teague, S.J., et al., *The design of leadlike combinatorial libraries*. Angewandte Chemie International Edition, 1999. **38**(24): p. 3743-3748.