Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Development of Immunoliposomes Containing Cytotoxic Gold Payloads Against HER2-Positive Breast Cancers

Afruja Ahad,^{a-c,f} Fatima Aftab,^{a,b} Alexa Michel,^f Jason S. Lewis,^{f-h*} Maria Contel^{a-e*}

^aDepartment of Chemistry, and ^bBrooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, USA. ^cBiology, ^dChemistry, and ^eBiochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, USA. ^fRadiology, ^gMolecular Pharmacology Program, and ^hRadiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Table of Contents

S1. Structures of gold(I) complexes Figure S1: Structures of 1 , 2 , and 3	3
S2. Dynamic light scatter Figure S2: Measurements of liposome size	4
S3. Engraftment Figure S3: SDS-PAGE gel	5
S4. Stability assays Figure S4: Encapsulation efficiency and size	6
S5. Optimized immunoliposomes Figure S5: Measurements of optimized liposome size Figure S6: TEM images of Opt-Lipo-2 and Opt-Immunolipo-Tras-2	7 8
 S6. Encapsulation of [AuCl(PPh₂-BODIPY)] Table S1: Characteristics of optimized immunoliposomes Figure S7: Size measurements of liposomes and immunoliposomes encapsulating 3 Figure S8: TEM images of liposomes and immunoliposomes encapsulating [AuCl(PPh₂-BODIPY)] Figure S8: Binding affinity, drug release and IC₅₀ Figure S9: Confocal microscopy images of organelle untake with [AuCl(PPh₂-BODIPY)] 	9 10 11 12 13
rigure 35: comocar microscopy mages of organetie uptake with [Auci(PPII2-DODIPT)]	12

S1: Structures of gold(I) Complexes

Figure S1: Structure of gold(I) phosphane-containing payloads [AuCl(PPh₃)] (**1**), [AuCl(PEt₃)] (**2**), [AuCl(PPh₂-BODIPY)] (**3**) encapsulated into immunolipsomes.

Figure S2: Measurements of liposome and immunoliposome size by DLS.

S3. Engraftment

Figure S3. Representative SDS-PAGE gel of antibody engraftment on liposome surface. Protein markers (L1 and L8), Lipo-1 (L2), reduced Trastuzumab (thiolation by Traut's reagent) indicating heavy (H) and light (L) chains (L3), Immunolipo-Tras-1 in identical bands indicating presence of antibody (L4), antibody-free liposomes (L5), reduced Pertuzumab again indicating heavy and light chains (L6), Immunolipo-Per-1 (L7).

S4. Stability assays

Figure S4. (A) Encapsulation efficiency of liposomal [AuCl(PPh₃)] (**1**) over 60 days with storage in PBS in 4°C. (B) Stability of size of liposomes and immunoliposomes over 60 days.

S5. Optimized immunoliposomes

Figure S5: Measurements of larger and optimized immunoliposome size by DSL.

Figure S6. TEM images of reduced size liposome (left) or immunoliposome (right) encapsulating [AuCl(PEt₃) (2) following uranyl acetate staining. Scale bar indicates size of liposomes to be ~100 nm in diameter. 150,000-200,000x magnification.

S6. Encapsulation of [AuCl(PPh₂-BODIPY)]

Table S1. Properties of liposomes and immunoliposomes encapsulating [AuCl(PPh₂-BODIPY)] (**3**). Stability measurements of size, PdI, Zeta potential, encapsulation and engraftment remain unchanged in storage in PBS at 4°C for up to 60 days.

	Lipo-3	Immunolipo-Tras-3	Opt-Immunolipo-Tras-3
Size	172 ± 9	188 ± 7	105 ± 9
Polydispersity Index	0.1	0.1	0.05
Zeta Potential	neutral	neutral	neutral
Concentration	9.4 x 10 ¹⁰	1.2 x 10 ⁹	6.4 x 10 ⁷
Encapsulation Efficiency	30%	35%	32%
Engraftment Efficiency	-	30%	31%

Figure S7. Size measurements of liposomes and immunoliposomes encapsulating 3 by DLS.

Figure S8. TEM images of liposomes or immunoliposomes encapsulating [AuCl(PPh₂-BODIPY) (**3**) following uranyl acetate staining. Top left: 200 nm liposomes encapsulating **3**, top right: 200 nm immunoliposomes encapsulating **3**, bottom left: 100 nm liposomes encapsulating **3**, bottom right: 100 nm immunoliposomes encapsulating **3**. 150,000-200,000x magnification.

Figure S9. (A) ELISA binding affinity assay between free antibodies and immunoliposomes to HER2. 2.5h incubation on pre-coated HER2 plate followed by colorimetric quantification of TMB substrate. Abs measured at 450 nm. (B) EC₅₀ quantification from ELISA. IL: immunoliposome. (C) Drug release of [AuCl(PPh₂-BODIPY)] (3). from liposomes vs. Trastuzumab-engrafted immunoliposomes in human serum at 37°C for up to 72 hours. Comparable drug release for both with 87% released for Lipo-3 and 85% for **Opt-Immunolipo-Tras-3**. (D) IC₅₀ values in cell line BT-474 for **3**, Lipo-3 and **Opt-Immunolipo-Tras-3**.

Figure S10. Confocal microscopy images of live BT-474 cells treated with **3** (IC₁₀) and MitoTracker Red FM (top), LysoTracker Red DND-99 (middle), and ER-Tracker Red (bottom). The image overlay (Merge, right) of both fluorescent channels shows the colocalization of **3** and organelle trackers. Manders' colocalization coefficient M₁ reflects the fraction of total signal emitted by **3** that overlaps with the organelle tracker, and M₂ reflects the fraction of the total signal emitted by the organelle tracker that overlaps with that of