Physicochemical characterization of B-hydroxyphenyl phosphine borane derivatives and their evaluation as nuclear estrogen receptor ligands

Yu Miyajima, Tomomi Noguchi-Yachide, Kotaro Ochiai and Shinya Fujii

Supplementary Information

Table of Contents

1. Synthesis and characterization of compounds S2
1.1 General procedure of phosphine borane derivatives 7-22 S2
1.2 Characterization of phosphine borane derivatives 7-22 S2
1.3 Preparation of alkane analogue 26 S9
1.4 Preparation of silane analogues $\mathbf{3 0}$ and 31 S9
2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ and ${ }^{31} \mathrm{P}$ NMR Spectra S12
3. Calculation of $\log P$ (Table S1) S47
4. Calculation of $\mathrm{p} K_{\mathrm{a}}$ (Table S2) S48
References for Supplementary Materials S49

1. Synthesis and characterization of compounds

1.1 General procedure of phosphine borane derivatives 7-22.

A dry round-bottomed flask, equipped with a magnetic stirring bar, sealed with a septum and protected with an Ar balloon, was charged with 4- or 3-hydroxyphenylboronic acid ($207 \mathrm{mg}, 2.0$ mmol) in 10 mL of THF. $\mathrm{LiAlH}_{4}(171 \mathrm{mg}, 6.0 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred and then phosphine ($2.0 \mathrm{mmol}, 1.0$ eq.) was added. Stirring was continued at room temperature with monitoring by TLC. After the change of the spots on TLC stopped, the mixture was quenched by the addition of sodium sulfate hydrate and filtered through Celite. The obtained solution was evaporated, and the residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate) to give the desired phosphine borane derivatives.
1.2 Characterization of phosphine borane derivatives 7-22.

B-(4-Hydroxyphenyl) trimethylphosphine borane (7)

Yield : 35.7 mg , 9.8%, white solid
$R_{\mathrm{f}}=0.46$ (hexane/ethyl acetate $=1 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.64$ (s, 1H), 6.97 (dd, J = 8.0, $2.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.54(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.04-1.36 (br, 2H), 1.20 (d, J = $10.6 \mathrm{~Hz}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 154.9\left(d, J_{C P}=4.3 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right)$,
9.9 (d, $J_{\mathrm{CP}}=36.8 \mathrm{~Hz}$)
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-23.8\left(d, J_{B P}=50.6 \mathrm{~Hz}\right)$
${ }^{31}$ P NMR (161 MHz , DMSO- d_{6}): $\delta-7.0$ (s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}$: 205.0924. Found 205.0930.

B-(4-Hydroxyphenyl) dimethylphenyphosphine borane (8)

Yield : $35.4 \mathrm{mg}, 16.1 \%$, white solid
$R_{\mathrm{f}}=0.31$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}): $\delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 6.96$ (dd, $J=$ 8.2, 2.8 Hz, 2H), $6.50(\mathrm{dd}, J=8.3,0.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-1.70(\mathrm{br}, 2 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 155.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 136.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right)$, $131.4\left(\mathrm{~d}, J_{\mathrm{CP}}=1.7 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=51.2 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.5 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 9.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=37.7 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-23.8(\mathrm{~s})$
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): δ-2.5(s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}:$267.1081. Found 267.1090.

B-(4-Hydroxyphenyl) triethylphenylphosphine borane (9)

Yield : 20.0 mg , 8.9\%, white solid
$R_{\mathrm{f}}=0.40$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.66$ (s,1H), 6.98 (dd, $\left.J=8.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.20-1.40 (br, 2H), 1.56-1.48 (m, 6H), 0.99 (quin, $J=7.5 \mathrm{~Hz}, 9 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 154.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.2 \mathrm{~Hz}\right)$, $12.7\left(d, J_{C P}=33.4 \mathrm{~Hz}\right), 6.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-27.4(\mathrm{~s})$
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 12.2$ (s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}$: 247.1394. Found 247.1404.

B-(4-Hydroxyphenyl) diethylphenylphosphine borane (10)

Yield : 65.5 mg , 24\%, white solid
$R_{\mathrm{f}}=0.38$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}): $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-1.67(\mathrm{br}, 2 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 4 \mathrm{H}), 0.92$ (quin, $J=7.7 \mathrm{~Hz}, 6 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 155.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 136.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.5 \mathrm{~Hz}\right)$, $131.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.1 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 127.2\left(\mathrm{~d}, J_{\mathrm{CP}}=47.7 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 14.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=35.2 \mathrm{~Hz}\right), 7.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-27.6(s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): δ 12.1(s)

HRMS (ESI) m/z calcd. $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 567.2895. Found 567.2909.

B-(3-Hydroxyphenyl) trimehylphosphine borane (11)

Yield : 98.2 mg, 27\%, white solid
$R_{\mathrm{f}}=0.40$ (hexane/ethyl acetate $=1 / 1$)
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=7.9$ Hz, 1H), 2.15-1.40 (br, 2H), 1.19 (d, J=10.7 Hz, 9H)
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 156.5$ (s$), 128.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=7.3 \mathrm{~Hz}), 111.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 10.0\left(\mathrm{~d}, J_{\mathrm{CP}}=37.4 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta-23.6\left(\mathrm{~d}, J_{\mathrm{BP}}=52.6 \mathrm{~Hz}\right)$
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): δ-6.7 (s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}$: 205.0924. Found 205.0928.

B-(3-Hydroxyphenyl) dimethylphenylphosphine borane (12)

Yield : $77.1 \mathrm{mg}, 18 \%$, white solid
$R_{\mathrm{f}}=0.29$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-1.67(\mathrm{br}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 6 \mathrm{H}$),
${ }^{13} \mathrm{C}$ NMR (100 MHz , aceton $-d_{6}$): $\delta 157.2$ (s$), 132.1$ ($\mathrm{d}, \mathrm{J}_{\mathrm{CP}}=8.5 \mathrm{~Hz}$), 132.0 (s$), 131.5$ (s$), 129.7\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 9.6 Hz), 128.7 (s), 128.3 (s$), 123.6$ (d, $J_{\mathrm{CP}}=7.4 \mathrm{~Hz}$), 112.4 (s), 10.3 ($\mathrm{d}, J_{\mathrm{CP}}=38.4 \mathrm{~Hz}$)
${ }^{11}$ B NMR (128 MHz , aceton- d_{6}): $\delta-24.0\left(\mathrm{~d}, J_{B P}=52.8 \mathrm{~Hz}\right.$)
${ }^{31} \mathrm{P}$ NMR (161 MHz , aceton- d_{6}): δ-2.7(s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}:$267.1081. Found 267.1084.

B-(3-Hydroxyphenyl) triethylphosphine borane (13)

Yield : $163.1 \mathrm{mg}, 36 \%$, colorless oil
$R_{\mathrm{f}}=0.37$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05-1.42 (br, 2H), 1.59-1.51 (m, 6H), 1.01 (quin, $J=7.5 \mathrm{~Hz}, 9 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 156.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right)$, $122.8\left(d, J_{C P}=6.8 \mathrm{~Hz}\right), 111.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 12.8\left(\mathrm{~d}, J_{\mathrm{CP}}=34.1 \mathrm{~Hz}\right), 6.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.5 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-27.6(s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 12.8(\mathrm{~s})$
HRMS (ESI) m / z calcd. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BNaOP}[\mathrm{M}+\mathrm{Na}]^{+}: 247.1394$. Found 247.1397.

B-(3-Hydroxyphenyl) diethylphenylphosphine borane (14)

Yield : $65.2 \mathrm{mg}, 12 \%$, white solid
$R_{\mathrm{f}}=0.38$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}): $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}, J=$ $7.6,1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-1.70(\mathrm{br}, 2 \mathrm{H}), 1.98-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.92$ (quin, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 156.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.8 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.7 \mathrm{~Hz}\right)$, $129.3\left(\mathrm{~d}, J_{C P}=9.1 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=48.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right), 122.9(\mathrm{~d}$, $\left.J_{C P}=7.2 \mathrm{~Hz}\right), 111.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 15.0\left(\mathrm{~d}, J_{\mathrm{CP}}=35.6 \mathrm{~Hz}\right), 7.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-27.7(\mathrm{~s})$
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 12.6(\mathrm{~s})$
HRMS (ESI) m/z calcd. for C16H23BOP $\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 273.1574. Found 273.1580.

B-(4-Hydroxyphenyl) triisopropylphosphine borane (15)

Yield : $72.0 \mathrm{mg}, 9.1 \%$ (2 steps) , white solid
$R_{\mathrm{f}}=0.47$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-$ 1.50 (br, 2H), 2.21-2.12 (m, 3H), 1.15-1.10 (m, 18H)
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 154.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{CP}}=6.3 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right)$, 20.5 (d, $J_{C P}=28.3 \mathrm{~Hz}$), 18.2 (s$)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-28.6(\mathrm{~s})$
${ }^{31} \mathrm{P}$ NMR (161 MHz, DMSO- d_{6}): δ 23.4(s)
HRMS (ESI) m/z calcd. $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 555.3834. Found 555.3820.

B-(4-Hydroxyphenyl) diisopropylphenylphosphine borane (16)

Yield : $86.7 \mathrm{mg}, 9.6 \%$ (2 steps), white solid
$R_{\mathrm{f}}=0.42$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400MHz, CD2Cl2): $\delta 7.78$ (t, $\left.J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61$ (d, J = 7.8 Hz, 2H), 2.58-1.90 (br, 2H), 2.47-2.38 (m, 2H), 1.07-0.95 (m, 12H)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 155.0\left(\mathrm{~d}, J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right.$), $137.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right)$, 131.7 (s$), 129.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.4 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 100.0(\mathrm{~s}), 20.6\left(\mathrm{~d}, J_{\mathrm{CP}}=31.3 \mathrm{~Hz}\right), 16.8-16.7$

(m)

${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-28.5(s)
${ }^{31}$ P NMR (161 MHz , DMSO- d_{6}): δ 20.0(s)
HRMS (ESI) m/z calcd. for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 623.3521. Found 623.3519.

B-(4-Hydroxyphenyl) tricyclopropylphosphine borane (17)

Yield : 92.6 mg , 24\% (2 steps) , white solid
$R_{\mathrm{f}}=0.37$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$,
1.82-1.13 (br, 2H), 0.752-0.643 (m, 15H)
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 154.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 137.1\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$,
$32.2\left(\mathrm{~d}, J_{\mathrm{CP}}=31.2 \mathrm{~Hz}\right), 2.32(\mathrm{~s}), 2.10\left(\mathrm{~d}, J_{\mathrm{CP}}=61.9 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-29.1 (s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 15.5$ (s)
HRMS (ESI) m/z calcd. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 543.2895. Found 543.2892.

B-(4-Hydroxyphenyl) tributylphosphine borane (18)

Yield : 152.0 mg, 25\%, white solid
$R_{\mathrm{f}}=0.56$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08-1.12 (br, 2H), 1.48-1.45 (m, 6H), 1.38-1.28 (m, 12H), $0.99(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 154.9\left(\mathrm{~d}, J_{\mathrm{CP}}=3.9 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.0 \mathrm{~Hz}\right)$, $24.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 24.3\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 20.1\left(\mathrm{~d}, J_{\mathrm{CP}}=32.4 \mathrm{~Hz}\right), 13.9(\mathrm{~s})$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-26.9 (s)
${ }^{31} \mathrm{P}$ NMR (161 MHz, DMSO- d_{6}): $\delta 6.7$ (s)
HRMS (ESI) m/z calcd. C36H68B2NaO2P2 [2M+Na] ${ }^{+}$: 639.4773. Found 639.4770.

B-(4-Hydroxyphenyl) tricyclopentylphosphine borane (19)

Yield : $175.0 \mathrm{mg}, 25 \%$, white solid
$R_{\mathrm{f}}=0.53$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.63$ ($\mathrm{s}, 1 \mathrm{H}$), 7.03 (dd, $J=8.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.49 (d, J=7.9 Hz, 2H),
2.23-1.30 (br, 2H), 2.14-2.05 (m, 3H), 1.77-1.49 (m, 24H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 154.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 137.3\left(\mathrm{~d}, J_{\mathrm{CP}}=6.2 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.1 \mathrm{~Hz}\right)$, 32.2 ($d, J_{C P}=31.2 \mathrm{~Hz}$), 28.3 (s$), 26.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.5 \mathrm{~Hz}\right)$
${ }^{11} \mathrm{~B}$ NMR (128 MHz, DMSO- d_{6}): δ-28.8 (s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 18.0$ (s$)$
HRMS (ESI) m / z calcd. for $\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 711.4773. Found 711.4799.

B-(4-Hydroxyphenyl) tricyclohexylphosphine borane (20)

Yield : 34.8 mg , 4.5%, white solid
$R_{\mathrm{f}}=0.61$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-$
1.11 (br, 2H), 1.88-1.65 (m, 19H), 1.32-1.16 (m, 16H)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 154.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right)$, 30.3 (d, $\left.J_{C P}=27.3 \mathrm{~Hz}\right), 27.8\left(d, J_{C P}=1.9 \mathrm{~Hz}\right), 27.3\left(d, J_{C P}=9.2 \mathrm{~Hz}\right)$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-28.5 (s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 14.7$ (s)
HRMS (ESI) m/z calcd. for $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}: 795.5712$. Found 795.5747.

B-(3-Hydroxyphenyl) diisopropylphenylphosphine borane (21)

Yield : 317.8 mg , 35\% (2 steps), white solid
$R_{\mathrm{f}}=0.47$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.80-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}$, 1H), 6.51-6.48 (m, 1H), $4.50(\mathrm{~s}, 1 \mathrm{H}), 2.60-1.80(\mathrm{br}, 2 \mathrm{H}), 2.60-1.80(\mathrm{br}, 2 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.07-$ 0.97 (m, 12H)
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 156.5\left(\mathrm{~d}, J_{C P}=2.8 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J_{C P}=6.2 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J_{C P}=2.5\right.$ $\mathrm{Hz}), 129.0\left(\mathrm{~d}, J_{C P}=8.8 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{C P}=2.9 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, J_{C P}=6.5 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J_{C P}=45.8 \mathrm{~Hz}\right)$, $123.4\left(\mathrm{~d}, J_{C P}=7.5 \mathrm{~Hz}\right), 111.9\left(\mathrm{~d}, J_{C P}=3.3 \mathrm{~Hz}\right), 20.7\left(\mathrm{~d}, J_{C P}=31.2 \mathrm{~Hz}\right), 16.8-16.7(\mathrm{~m})$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): $\delta-28.3(\mathrm{~s})$
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): $\delta 21.2$ (s)
HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 623.3521 . Found 623.3561.

B-(3-Hydroxyphenyl) tributylphosphine borane (22)

Yield : $47.7 \mathrm{mg}, 7.7 \%$, colorless oil
$R_{\mathrm{f}}=0.64$ (hexane/ethyl acetate $=2 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.22(\mathrm{br}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 18 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, ~ D M S O-d_{6}\right): \delta 156.6(\mathrm{~s}), 128.1(\mathrm{~s}), 126.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6 \mathrm{~Hz}\right), 122.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}\right)$, $111.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 24.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 24.3\left(\mathrm{~d}, J_{\mathrm{CP}}=12.2 \mathrm{~Hz}\right), 20.2\left(\mathrm{~d}, J_{\mathrm{CP}}=33.2 \mathrm{~Hz}\right), 14.0(\mathrm{~s})$
${ }^{11}$ B NMR (128 MHz, DMSO- d_{6}): δ-26.8(s)
${ }^{31}$ P NMR (161 MHz, DMSO- d_{6}): δ 7.57(s)
HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{~B}_{2} \mathrm{NaO}_{2} \mathrm{P}_{2}[2 \mathrm{M}+\mathrm{Na}]^{+}$: 639.4773 . Found 639.4761.

1.3 Preparation of alkane analogue 26

A dry round bottom flask, equipped with a magnetic stirring bar, sealed with a septum and protected with an Ar balloon, was charged with magnesium ($52.3 \mathrm{mg}, 2.2 \mathrm{mmol}$) in 0.5 mL of $\mathrm{Et}_{2} \mathrm{O}$. 1-Chloro-2-methyl-2-phenylpropane ($0.32 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added to the mixture and then stirred under reflux for 1 h . Then, compound $\mathbf{2 4}$ ($262 \mathrm{mg}, 0.84 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}(\mathrm{dppf})(19.1 \mathrm{mg}, 0.23 \mathrm{mmol})$ in 5.5 mL of $\mathrm{Et}_{2} \mathrm{O}$ were further added and the mixture was stirred for 4.5 h . The reaction mixture was allowed to cool to room temperature, washed with 1% aqueous HCl at three times, water at two times and saturated brine at two times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent: diethyl ether) and used for the next step.

To a solution of compound 25 ($131 \mathrm{mg}, 0.30 \mathrm{mmol}$) in 1.0 mL of THF was added 1 M tetrabutylammonium fluoride in THF (0.40 mmol) at room temperature. After stirring for 15 min , the reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent: hexane/ethyl acetate, $8: 1$) to give the compound 26 ($48.5 \mathrm{mg}, 26 \%, 2$ steps).

Yield : 26\% (2steps), white solid
$R_{f}=0.48$ (hexane/ethyl acetate $=5 / 1$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 155.9$ (s$), 149.4$ (s$), 131.5$ (s$), 129.1$ (s$), 128.3$ (s), 126.5 (s), 125.9 (s), 114.7 (s), 49.7 (s), 38.9 (s), 28.4 (s)

1.4. Preparation of silane analogues 30 and 31

4-[(Trimethylsilyl)methyl]phenol (30)

A dry round bottom flask, equipped with a magnetic stirring bar, sealed with a septum and protected with an Ar balloon, was charged with magnesium ($12.2 \mathrm{mg}, 0.6 \mathrm{mmol}$) trimethylsilyl chloride ($76 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ and THF (0.6 mL). Compound $27(138.6 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF (0.3 mL) was added dropwise over 20 minutes. After stirring at room temperature, the reaction was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate for three times. The organic layer was combined, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (eluent: hexane/ethyl acetate, 20:1) to give the compound $\mathbf{2 8}$ as a mixture. The mixture was used for next reaction without further purification. Then the mixture was hydrogenated with 7.5 \% Pd/C in MeOH at room temperature. Insoluble materials were removed through Celite, and the filtrate was concentrated. The residue was purified by preparative thin-layer chromatography (eluent: dichloromethane) to give the compound $\mathbf{3 0}$ (11.4 $\mathrm{mg}, 13 \%$ for 2 steps).

Yield : 13\% (2steps), white solid
$R_{\mathrm{f}}=0.32$ (hexane/ethyl acetate $=5 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{~s}$, 2H), 0.02 (s, 9H)
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3): $\delta 152.2$ (s), 132.5 (s), 128.9 (s), 115.0 (s), 25.7 (s), -2.0 (s)

4-[(Dimethylphenylsilyl)methyl]phenol (31)

A dry round bottom flask, equipped with a magnetic stirring bar, sealed with a septum and protected with an Ar balloon, was charged with magnesium ($332 \mathrm{mg}, 13.6 \mathrm{mmol}$) dimethylphenylsilyl chloride ($1.1 \mathrm{~mL}, 13.6 \mathrm{mmol}$) and THF (0.5 mL). Compound 27 ($1.90 \mathrm{~g}, 6.8 \mathrm{mmol}$) in THF (8 mL) was added dropwise over 30 minutes. After stirring at room temperature, the reaction was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate for three times. The organic layer was combined, washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (eluent: hexane/ethyl acetate, 11:1) to give the compound $\mathbf{2 9}$ as a mixture. The mixture was used for next reaction without further purification.

Then the mixture was hydrogenated with 7.5 \% Pd/C in MeOH at room temperature. Insoluble materials were removed through Celite, and the filtrate was concentrated. The residue was purified by silica-gel column chromatography (eluent: hexane/ethyl acetate, 10:1) to give the compound 31
(175 mg, 54% for 2 steps).

Yield : 54\% (2steps), white solid
$R_{\mathrm{f}}=0.29$ (hexane/ethyl acetate $=5 / 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}$
$=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.3$ (s$), 138.5$ (s$), 133.7$ (s$), 131.6$ (s$), 129.2$ (s), 129.0 (s), 127.7 (s),
115.0 (s), 24.9 (s), -3.5 (s)

HRMS (ESI) m/z calcd. for C15H17OSi [M-H] ${ }^{-}$: 241.1054. Found 241.1053.

2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ and ${ }^{31} \mathrm{P}$ NMR Spectra

B-(4-Hydroxyphenyl) trimethylphosphine borane (7)

f1	
NUC1 ${ }_{\mathrm{P}_{\mathrm{PL}}}^{\mathrm{PL}}$	$\begin{aligned} & 310.1 \mathrm{P} \\ & 0.70 \\ & 02070 \end{aligned}$
${ }_{\substack{\text { Pren }}}^{\text {SFIW }}$	\% 1.10234998
	$161.975496{ }^{32768}$
${ }_{\text {WS }}^{\text {WSW }}$	${ }_{0}^{\text {EM }}$
$\underset{\text { GB }}{\text { LB }}$	1.00 Hz

B-(4-Hydroxyphenyl) dimethylphenyphosphine borane (8)

B-(4-Hydroxyphenyl) triethylphenylphosphine borane (9)

HOPhBH2PEt 3

IBB-nmr Analysis

IBB-nmr Analysis

B-(4-Hydroxyphenyl) diethylphenylphosphine borane (10)

4-HOPhBH2PPhEt2
IBB-nmr Analysis

4-HOPhBH2PPhEt2

IBB-nmr Analysis

	40	30	20	10	0	-10	-20	-30	-40	ppm

B-(3-Hydroxyphenyl) trimehylphosphine borane (11)

3-HOPhBH2PMe3
Vi. VV|l

IBB-nmr Analysis
3-HOPhBH2PMe3
IBB-nmr Analysis

$\begin{array}{llllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

IBB-nmr Analysis

15	10	5	0	-5	-10	-15	ppm

B-(3-Hydroxyphenyl) dimethylphenylphosphine borane (12)

3-HOPhBH2PPhMe2 redried

IBB-nmr Analysis

3HOPhBH2PPhMe2
IBB-nmr Analysis

| 25 | 20 | 15 | 10 | 5 | 0 | -5 | -10 | -15 | -20 | -25 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B-(3-Hydroxyphenyl) triethylphosphine borane (13)

B-(3-Hydroxyphenyl) diethylphenylphosphine borane (14)

3-HOPhBH2PEt2Ph redried

IBB-nmr Analysis

IBB-nmr Analysis

B-(4-Hydroxyphenyl) triisopropylphosphine borane (15)

4HOPhBH2P(i-Pr) 3

IBB-nmr Analysis

B-(4-Hydroxyphenyl) diisopropylphenylphosphine borane (16)

$4 \mathrm{HOPhBH} 2 \mathrm{PPh}(\mathrm{i}-\mathrm{Pr}) 2 \quad 16-37 \mathrm{Fr}$

f1 $=-=$	
${ }_{p 1}^{\text {PUC1 }}$	10.00
${ }_{\text {PLIT }}^{\text {PL1 }}$	
	9679768
${ }_{\substack{\text { SF } \\ \text { WDW }}}^{\text {Sm }}$	${ }_{161.9754962}^{\text {EM }}$
SB	
${ }_{\substack{\text { PB }}}^{\text {PB }}$	

B-(4-Hydroxyphenyl) tricyclopropylphosphine borane (17)

IBB-nmr Analysis

$\begin{array}{lllllllllll} & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & \mathrm{ppm}\end{array}$

B-(4-Hydroxyphenyl) tributylphosphine borane (18)

4-HOPhBH2P $(\mathrm{n}-\mathrm{Bu}) 3$

IBB-nmr Analysis

4 -HOPhBH2P (n-Bu) 3
IBB-nmr Analysis

B-(4-Hydroxyphenyl) tricyclopentylphosphine borane (19)

IBB-nmr Analysis

[^0]
\qquad

4-HOPhBH2P(cyclopentyl)3

IBB-nmr Analysis

B-(4-Hydroxyphenyl) tricyclohexylphosphine borane (20)

IBB-nmr Analysis

B-(3-Hydroxyphenyl) diisopropylphenylphosphine borane (21)

3HOPhBH2PPh(i-Pr)2

3HOPhBH2PPh (i-Pr) 2

IBB-nmr Analysis

	45	40	35	30	25	20	15	10	5	ppm

B-(3-Hydroxyphenyl) tributylphosphine borane (22)

$3 \mathrm{HOPhBH} 2 \mathrm{P}(\mathrm{n}-\mathrm{Bu}) 3$ 21-31Fr	IBB-nmr Analysis	
	name	Oct9-2021
	EXPNO	${ }_{6}$
	Procno	20211009
	${ }_{\text {Date }}{ }_{\text {Time }}{ }^{\text {d }}$	20211009 20.58
	INSTRUM	av400
	${ }_{\text {PUULPROG }}$	5 mm PABBO ${ }_{\text {zai }}^{\text {zgig }}$
		32768
	${ }_{\text {NS }}$ SOLVENT	${ }_{1024}$
	DS	
	${ }_{\text {SWIDR }}$	20000.000 Hz 0.610352 Hz
	${ }^{\text {AQ }}$	$0.8192500 ~$ 203
	${ }_{\text {DW }}$	25.000 usec
	${ }_{\text {TE }}^{\text {DE }}$	20.00 usec 297.9 K
	${ }_{\text {D1 }}$	1.00000000 sec
	${ }_{\text {TD0 }}^{\text {T11 }}$	${ }_{0}^{0.03000000} 1 \mathrm{sec}$
	===== $=$	Channel f1
	NuC1	${ }^{11 \mathrm{~B}}$
	${ }_{\text {PL }}^{\text {PL }}$	6.30 usec -2.00 dB
	SFO1	128.3776050 MHz
	======	CHANNEL $\mathrm{f} 2===$
		waltz16 ${ }_{1}$
	PCPD2	80.00 usec
	${ }_{\text {PLL2 }}$	-1.70 13.80 dB
	${ }_{\text {PLL2 }}$	14.48987389 W
	${ }_{\text {SFO2 }}{ }_{\text {PL12 }}$	0.40838012 W 400.1316005 MHz
	$\mathrm{SI}_{\text {SF }}$	128.3776183 MHz
	WDW	${ }_{\text {EM }}^{128.3776183 \mathrm{MHz}}$
	SSB	0
	${ }_{\text {GB }}^{\text {LB }}$	${ }^{2.000 ~} \mathrm{Oz}$
	PC	1.40

IBB-nmr Analysis

4-(2-Methyl-2-phenylpropyl)phenol (26)

4-[(trimethylsilyl)methyl]phenol (30)

4-[(dimethylphenylsilyl)methyl]phenol (31)

4-HOPhCH2SiPhMe2

4-HOPhCH2SiPhMe2
IBB-nmr Analysis

3. Calculation of LogP

Table S1. Experimental and calculated $\log P$ values of phosphine boranes. Differences between experimental values and calculated values are noted in parentheses.

Cmpd	X-Y		R^{1}	R^{2}	$\log P$		
					experimental	Calculated by ChemDraw ${ }^{a}$	Calculated by ALOGPS ${ }^{b}$
Phenol	-	-	-	-	1.46	1.48 (+0.02)	1.39 (-0.07)
7	$-\mathrm{BH}_{2}-\mathrm{P}$	4-OH	Me	Me	2.44	2.13 (-0.31)	3.05 (+0.61)
8			Ph	Me	3.18	4.03 (+0.31)	4.41 (+1.23)
9			Et	Et	3.28	3.72 (+0.31)	4.85 (+1.57)
10			Ph	Et	4.11	5.09 (+0.98)	5.42 (+1.31)
11		$3-\mathrm{OH}$	Me	Me	2.55	2.13 (-0.42)	2.98 (+0.43)
12			Ph	Me	3.27	4.03 (+0.76)	4.39 (+1.12)
13			Et	Et	3.47	3.72 (+0.25)	4.81 (+1.34)
14			Ph	Et	4.19	5.09 (+0.90)	5.39 (+1.20)
23	$-\mathrm{CH}_{2}-\mathrm{C}$	4-OH	Me	Me	4.36	3.83 (-0.53)	3.79 (-0.57)
26			Ph	Me	5.26	4.72 (-0.54)	4.64 (-0.62)
30	$-\mathrm{CH}_{2}-\mathrm{Si}$		Me	Me	4.91	3.47 (-1.44)	3.31 (-1.60)
31			Ph	Me	5.74	5.62 (-0.12)	5.41 (-0.33)

${ }^{a}$ ChemDraw 22.2.0
${ }^{b}$ ALOGPS 2.1 program ${ }^{1,2}$

4. Calculation of $\mathrm{p} K_{\mathrm{a}}$ values

Table S2. Experimental and calculated $\log P$ values of phosphine boranes. Differences between experimental values and calculated values are noted in parentheses.

Cmpd	X-Y		R^{1}	R^{2}	$\mathrm{p} K_{\mathrm{a}}$		
					experimental	Calculated by ChemDraw ${ }^{a}$	DFT-based calibration method ${ }^{b}$
Phenol	-	-	-	-	10.44	9.97 (-0.47)	9.85 (-0.59)
7	$-\mathrm{BH}_{2}-\mathrm{P}$	4-OH	Me	Me	11.28	11.40 (+0.12)	10.46 (-0.82)
8			Ph	Me	11.22	11.29 (+0.07)	10.38 (-0.84)
9			Et	Et	11.02	11.32 (+0.30)	10.13 (-0.89)
10			Ph	Et	11.05	11.24 (+0.19)	10.04 (-1.01)
11		$3-\mathrm{OH}$	Me	Me	11.26	12.60 (+1.34)	10.55 (-0.71)
12			Ph	Me	11.33	12.45 (+1.12)	10.51 (-0.82)
13			Et	Et	11.33	12.53 (+1.20)	10.57 (-0.76)
14			Ph	Et	11.29	12.41 (+1.12)	10.53 (-0.80)
23	- $\mathrm{CH}_{2}-\mathrm{C}$	4-OH	Me	Me	10.77	9.76 (-1.01)	10.12 (-0.65)
26			Ph	Me	10.69	9.65 (-1.04)	10.10 (-0.59)
30	$-\mathrm{CH}_{2}-\mathrm{Si}$		Me	Me	10.74	9.66 (-1.08)	10.26 (-0.48)
31			Ph	Me	10.89	9.54 (-1.35)	10.27 (-0.62)

${ }^{a}$ Calculated by ChemDraw 22.2.0
${ }^{b}$ The detailed method is noted below.

Calculation of $\mathrm{p} K_{\mathrm{a}}$ by DFT-based calibration: All density functional theory (DFT) calculations were performed with the Spartan' 18 programs, Wavefunction, Inc., Irvine, CA. The geometry optimization of compounds were carried out at the B3LYP/6-311++G* level of theory. The Gibss energy of the protonated and the deprotonated forms of each compound was approximated by essentially a combination of the gas phase and solution phase DFT energies. ${ }^{3,4}$ For the reference compounds (phenol, 4-mrthylphenol, 4-methoxyphenol, 4-chlorophenol, 4-phenylphenol, 2-nitrophenol), the differences of calculated Gibbs energy between the protonated and the deprotonated forms were plotted against the actual pKa values to prepare a calibration curve. The $\mathrm{p} K_{\mathrm{a}}$ values of test compounds were obtained by interpolation of the calculated Gibbs energy of the calibration curve.

References for Supplementary Information

1. I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, and V. V. Prokopenko, J. Comput. Aid. Mol. Des., 2005, 19, 453-463.
2. VCCLAB, Virtual Computational Chemistry Laboratory, https://vcclab.org, 2005.
3. M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus, and G. C. Shields, J. Am. Chem. Soc. 2002, 124, 6421-6427.
4. J. J. Klicić, R. A. Friesner, S.-Y. Liu, and W. C. Guida, J. Phys. Chem. A 2002, 106, 1327-1335.

[^0]: $\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

