Discovery of a Dual-Acting Inhibitor of Interleukin-1β and STATs for the Treatment of Inflammatory Bowel Disease

Haowei Cai, ^{#, †} Zhuorong Liu, ^{#, †} Ping Sun, ^{#, †} Yinghua Zhou, [†] Yuyun Yan, [†] Yiming Luo, [†] Xiuxiu Zhang, [†] Ruiwen Wu, [†] Xiangting Liang, [†] Dan Wu, [†] Wenhui Hu, *, [†] and Zhongjin Yang *, [†]

[†]Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the

NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and

the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.

*Corresponding Authors

- Z. Yang E-mail: yzj23@gzhmu.edu.cn.
- W. Hu E-mail: huwenhui@gzhmu.edu.cn.

Supporting Information

Table of Contents:

1. The in vitro cytotoxicity profile for 10v	2
2. Copies of the ¹ H/ ¹³ C NMR spectra	3
2. Copies of the HRMS	23
4. HPLC spectrum of 10v	33

1. The in vitro cytotoxicity profile for 10v

Figure S1. The cell viability detection of 10v using CCK8 assay.

2. Copies of the ¹H/¹³C NMR spectra

¹HNMR spectrum of **5** in DMSO

¹³CNMR spectrum of **5** in DMSO

¹HNMR spectrum of **10b** in DMSO

¹³CNMR spectrum of **10b** in DMSO

¹HNMR spectrum of **10c** in DMSO

¹³CNMR spectrum of **10c** in DMSO

¹HNMR spectrum of **10d** in DMSO

¹³CNMR spectrum of **10d** in DMSO

¹HNMR spectrum of **10f** in DMSO

¹³CNMR spectrum of **10f** in DMSO

¹HNMR spectrum of **10h** in DMSO

¹³CNMR spectrum of **10h** in DMSO

¹HNMR spectrum of **10i** in DMSO

¹HNMR spectrum of **10j** in DMSO

¹³CNMR spectrum of **10j** in DMSO

¹HNMR spectrum of **10k** in CD₃OD

¹HNMR spectrum of **10l** in DMSO

¹HNMR spectrum of **10m** in DMSO

¹HNMR spectrum of **10n** in DMSO

¹HNMR spectrum of **100** in DMSO

¹³CNMR spectrum of **100** in DMSO

¹HNMR spectrum of **10p** in DMSO

¹³CNMR spectrum of **10q** in DMSO

¹HNMR spectrum of **10r** in DMSO

¹HNMR spectrum of **10s** in DMSO

¹HNMR spectrum of **10t** in CDCl₃

¹³CNMR spectrum of **10t** in DMSO

¹HNMR spectrum of **10u** in CD₃OD

¹³CNMR spectrum of **10u** in DMSO

¹HNMR spectrum of 10v in CD₃OD

¹³CNMR spectrum of **10v** in CD₃OD

2. Copies of the HRMS

Mass spectrometry of **10b**

m/z

Mass spectrometry of 10k

P

$\begin{array}{l} Mass \ spectrometry \ of \ 10m \\ \ YY-18 \ \#18.31 \ \ RT. \ 0.08.0.14 \ \ AV: \ 14 \ \ NL: \ 9.12E8 \\ \ T: \ FTMS \ + \ p \ ESI \ Full \ ms \ [105.0000-1500.0000] \end{array}$

g

$\begin{array}{l} Mass \ spectrometry \ of \ 10o \\ \ YY \cdot 25 \ \# 15 \cdot 29 \ \text{RT} & 0.07 \cdot 0.14 \ \text{AV} & 15 \ \text{NL} & 2.56\text{E8} \\ \ T & \ \text{FTMS} \ + \ p \ \text{ESI} \ \text{Full ms} \ [105.0000 \cdot 1500.0000] \end{array}$

g

$\begin{array}{l} Mass \ spectrometry \ of \ 10s \\ {\ } \mbox{YY-20\,\#17-28} \ \ RT \ 0.07-0.12 \ \ AV \ 12 \ \ NL \ 1.71E9 \\ T \ \ FTMS \ + \ p \ ESI \ Full \ ms \ [105.0000-1500.0000] \end{array}$

Mass spectrometry of 10t YYY-21#16-29 RT: 0.07-0.13 AV: 14 NL: 1.09E9 T: FTMS + p ESI Full ms [105.0000-1500.0000]

g

4. HPLC spectrum of 10v

Instrument: Agilent 1290

Detector: UV (254 nM)

Column SB-C18 (25 cm \times 0.46 cm, 5 μ m)

Eluent: CH_3OH/H_2O (80/20 to 95/5, v/v), containing 0.1% formic acid.

Flow rate: 1.0 mL/min

Integration Results for DAD1A, Sig=254.0, 4.0 Ref=360.0,100.0

Peak	RetTime	Area	%Area	Height	Туре
1	3.957	29884.57	100%	895.12	VB