Supporting information for:

Semisynthetic polymyxins with potent antibacterial activity and reduced kidney cell toxicity

Cornelis J. Slingerland,¹ Vladyslav Lysenko,¹ Samhita Chaudhuri,¹ Charlotte M.J. Wesseling,¹ Devon Barnes,² Rosalinde Masereeuw,² Nathaniel I. Martin^{1,*}

¹Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.

²Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.

*All correspondence should be directed to n.i.martin@biology.leidenuniv.nl

Table of contents

S2	General Procedures
S3-S10	HPLC traces and HRMS data for final compounds
S11	Extended toxicity data on all analogues
S12	Extended toxicity data on 8d
S13	Extended MIC data
S14	Synergy data on polymyxin B and 8d with Gram-positive selective antibiotics
S15	Bacterial strain source indications
S15	References

General Procedures

All reagents employed were of American Chemical Society (ACS) grade or finer and were used without further purification unless otherwise stated. Commercially sourced Polymyxin B was obtained as a mixture of isomers (Combi-Blocks, San Diego, USA), with polymyxin B_1 , B_2 , and B_3 accounting for >90% of the isomers.

For compound characterization, HRMS analysis was performed on a Shimadzu Nexera X2 UHPLC system with a Waters Acquity HSS C18 column (2.1 × 100 mm, 1.8 µm) at 30 °C and equipped with a diode array detector. The following solvent system, at a flow rate of 0.5 mL/min, was used: solvent A, 0.1 % formic acid in water; solvent B, 0.1 % formic acid in acetonitrile. Gradient elution was as follows: 95:5 (A/B) for 1 min, 95:5 to 15:85 (A/B) over 6 min, 15:85 to 0:100 (A/B) over 1 min, 0:100 (A/B) for 3 min, then reversion back to 95:5 (A/B) for 3 min. This system was connected to a Shimadzu 9030 QTOF mass spectrometer (ESI ionization) calibrated internally with Agilent's API-TOF reference mass solution kit (5.0 mM purine, 100.0 mM ammonium trifluoroacetate and 2.5 mM hexakis(1*H*,1*H*,3*H*-tetrafluoropropoxy)phosphazine) diluted to achieve a mass count of 10000.

Purity of the peptides was confirmed to be \geq 95% by analytical RP-HPLC using a Shimadzu Prominence-i LC-2030 system with a Dr. Maisch ReproSil Gold 120 C18 column (4.6 × 250 mm, 5 µm) at 30 °C and equipped with a UV detector monitoring at 214 nm. The following solvent system, at a flow rate of 1 mL/min, was used: solvent A, 0.1 % TFA in water/acetonitrile, 95/5; solvent B, 0.1 % TFA in water/acetonitrile, 5/95. Gradient elution was as follows: 100:0 (A/B) for 3 min, 100:0 to 0:100 (A/B) over 47 min, 0:100 (A/B) for 4 min, then reversion back to 100:0 (A/B) over 1 min, 100:0 (A/B) for 5 min.

S2

HPLC traces and HRMS data for final compounds

Composition Exact mass M + H (M+2H)/2 Found value 1195.6333 598.3207 1195.6334 $C_{53}H_{90}N_{14}O_{13}S_2$ 1194.6253 1700000 1500000 H_2N ŃН 1300000 HN 1100000 $\bar{\bar{N}}H_2$ он Abs. (210 nm) [-] NH \cap 900000 700000 нс NH2 500000 300000 100000 -100000 0 10 20 30 40 50 60 Time [min]

Compound 7a

Compound 7b

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{52}H_{88}N_{14}O_{12}S_2$	1194.6148	1165.6228	583.3154	1165.6224

Compound 7c

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{53}H_{91}N_{15}O_{12}S_2$	1193.6413	1194.6493	597.8287	1194.6489

Compound 7d

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{53}H_{91}N_{15}O_{12}S_2$	1193.6413	1194.6493	597.8287	1194.6492

Compound 7e

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{54}H_{93}N_{15}O_{12}S_2$	1207.6570	1208.6650	604.8365	604.8357

Compound 8a

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{50}H_{86}N_{14}O_{13}S_2$	1154.5940	1155.6020	578.3050	578.3046

Compound 8b

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{49}H_{84}N_{14}O_{12}S_2$	1124.5835	1125.5915	563.2998	563.2990

Compound 8c

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{50}H_{87}N_{15}O_{12}S_2$	1153.6100	1154.6180	577.8130	577.8128

Compound 8d

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{50}H_{87}N_{15}O_{12}S_2$	1153.6100	1154.6180	577.8130	577.8122

Compound 8e

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{51}H_{89}N_{15}O_{12}S_2$	1167.6257	1168.6337	584.8209	584.8198

Compound 9a

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{52}H_{81}CIN_{14}O_{13}S_2$	1208.5237	1209.5317	605.2699	1209.5311

Compound 9b

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{51}H_{79}CIN_{14}O_{12}S_2$	1178.5132	1179.5212	590.2646	1179.5210

Compound 9c

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{52}H_{82}CIN_{15}O_{12}S_2$	1207.5397	1208.5477	604.7779	1208.5476

Compound 9d

Composition	Exact mass	M + H	(M+2H)/2	Found value
$C_{52}H_{82}CIN_{15}O_{12}S_2$	1207.5397	1208.5477	604.7779	1208.5477

Compound 9e

С	omposition	ion Exact mass M + H		(M+2H)/2	Found value
C ₅₃ I	C ₅₃ H ₈₄ CIN ₁₅ O ₁₂ S ₂ 1221.5554		1222.5634	611.7857	1222.5620
	H ₈₄ CIN ₁₅ O ₁₂ S ₂ 40000 35000 30000 25000	1221.5554	1222.5634	611.7857	
[-] (u	20000			NH ₂ 0 NH ₂	
10 nr	10000				HO NH ₂
os. (2	5000				
Ab	0 -5000	10	20 30	40	50 60
			Time [mi	n]	

Analytical data for compounds **7f**, **8f** and **9f** have been previously reported.¹

Extended toxicity data on all analogues

Figure S1. Viability of PTECs upon incubation with polymyxin analogues. Cells were exposed to the compound at 100 μ M for 24 hours, followed by washing, incubation with resazurin (PrestoBlueTM) and fluorescence read-out. Data are normalized to positive control (medium treated cells). Represented date are from triplicates.

Figure S2. Viability of PTECs upon incubation with polymyxin analogues. Cells were exposed to the compound at 500 μ M for 24 hours, followed by washing, incubation with resazurin (PrestoBlueTM) and fluorescence read-out. Data are normalized to positive control (medium treated cells). Represented date are from triplicates.

Extended toxicity data on 8d

Figure S3. Viability of PTECs upon incubation with polymyxin B and analogue **8d**. Cells were exposed to the compound for 24 hours, followed by washing, incubation with resazurin (PrestoBlueTM) and fluorescence read-out. Data are normalized to positive control (medium treated cells). Represented date are from triplicates.

Extended MIC data

	Strain	Resistance	MIC values (µg/mL)		
			8d	Polymyxin B	
	NCTC 13846	mcr-1, others (not specified)		4	
	2158	OXA	4	2	
	RC089	NDM-1	0.25	0.125	
	2018-014	IMP-4	0.5	0.25	
	1062	NDM-5	0.5	0.25	
E. coli	M0072	Ciprofloxacin, doxycycline, trimethoprim	0.5	0.25	
	JS136	OXA-48	0.5	0.25	
	NCTC 12486	-	0.5	0.25	
	mcr-1	mcr-1	4	4	
	EQAS mcr-1	mcr-1 4		2	
	EQAS mcr-2	mcr-2 4		4	
K pneumoniae	2048	OXA-1, SHV-11, CTX-M-15, TEM- 1C	2	0.5	
,	JS-022	NDM-1	2	2	
	1124	VIM-1	2	1	
	RC0060	VIM-2, blaPAO	4	4	
	ATCC 10145	-	2	2	
	2251	VIM-2	2	4	
P. aeruginosa	2018-011	NDM-1	2	1	
	JS-080	IMP-13, IMP-37, blaPAO	2	1	
	2173	VIM-2, blaPAO, OXA-50	2	2	
A. baumannii	RUH-134	Multiple ²	0.5	0.25	
	9955	-	0.5	0.25	
	NRZ-00687	NDM-2	1	0.25	
	ATCC 17961	-	0.25	0.125	
	BAA-747	-	0.5	0.25	

Table S1. Extended MIC data on compound 8d.

Synergy data on polymyxin B and 8d with Gram-positive selective antibiotics

Figure S4. Checkerboard assays results, exploring synergetic activity between polymyxin B and antibiotics typically used for Gram-positive bacteria only: novobiocin (left), rifampicin (middle) and erythromycin (right). Experiments are done on mcr-2 positive E. coli. Color intensity corresponds to growth (as read by OD_{600} measurements), with white areas indicating no growth. Each square represent data from a technical triplicate. The bounded box indicates the combination of antibiotic and synergist with the lowest FIC.

Table S2. MIC and MSC values for synergist-antibiotic concentrations as shown in Figure 4, Table 2 and Figure S4. MIC_{ant}: MIC of the antibiotic. MIC_{syn}: MIC of the synergist. MSC_{ant}: synergistic concentration of the antibiotic corresponding to the indicated FIC value. MSC_{syn}: synergistic concentration of the synergist corresponding to the indicated FIC value. FIC index: fractional inhibitory concentration index. MIC and MSC values are expressed in μ g/mL.

Synergist	Antibiotic	MIC ant	MIC _{syn}	MSC _{ant}	MSC _{syn}	FIC index
8d	Novobiocin	32	4	2	0.5	0.19
8d	Rifampicin	8	4	0.13	0.5	0.14
8d	Erythromycin	64	4	1	1	0.27
Polymyxin B	Novobiocin	32	4	4	0.5	0.25
Polymyxin B	Rifampicin	8	4	0.13	0.25	0.08
Polymyxin B	Erythromycin	64	4	2	0.5	0.16

Bacterial strains used for MIC assays

The following strains were obtained from BEI Resources, NIAID, NIH:

E. Coli M0072, strain MVAST0072, NR-51488.

Table S3. Background of the strains used for MIC testing, as shown in Table 1. NDM: New Dehli Metallobetalactamase; OXA: oxacillinase; IMP: imipenemase.

.

Stra	in	Resistance		
	ATCC 25922	-		
E. coli	1313	NDM-1		
	NCTC 13846	mcr-1, others (not specified)		
K. pneumoniae	ATCC 13883	-		
	JS-123	NDM		
	NCTC 13443	NDM-1		
	ATCC 19606	-		
1 houmonnii	ATCC 17978	-		
A. Daumannii	MDR	Multi drug restistant (not specified)		
	2018-006	NDM/OXA-023/OXA-051		
	ATCC 27853	-		
P. aeruginosa	NRZ 08418	NDM-1		
	NRZ 03961	IMP-1		

References

- C. J. Slingerland, C. M. J. Wesseling, P. Innocenti, K. G. C. Westphal, R. Masereeuw and N. I. Martin, *J. Med. Chem.*, 2022, 65, 15878–15892.
- 2 S. J. Nigro and R. M. Hall, *J. Antimicrob. Chemother.*, 2012, **67**, 335–338.