Supporting Information

Molecular Editing of NSC-666719 Enabling Discovery of Benzodithiazinedioxide-guanidines

as Anticancer Agents

Vajja Krishna Rao,¹ Subarno Paul,² Mitchell Gulkis,³ Zhihang Shen,⁴ Haritha Nair,⁵ Amandeep Singh,⁶ Chenglong Li,⁴ Chinmay Das,² Biswajit Das,² Arun K. Sharma,⁶ Melike Çağlayan,³ Chanakya N. Kundu,^{2*} Satya Narayan^{5*} and Sankar K. Guchhait^{1*}

¹Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
²Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar-751024, Odisha, India
³Department of Biochemistry and Molecular Biology, College of Medicine, 1200 Newell Drive, University of Florida, Gainesville, FL 32610, USA
⁴Department of Medicinal Chemistry, College of Pharmacy, 1345 Center Drive, University of Florida, Gainesville, FL 32610, USA
⁵Department of Anatomy and Cell Biology, College of Medicine, 1200 Newell Drive, University of Florida, Gainesville, FL 32610, USA
⁶Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA

*Corresponding authors: Sankar K. Guchhait (<u>skguchhait@niper.ac.in</u>), Satya Narayan (<u>snarayan@ufl.edu</u>), and Chanakya Nath Kundu (<u>cnkundu@kiitbiotech.ac.in</u>)

Table of Contents

1 Supporting Figures, Tables, Schemes:	S3
2 Characterization data for <i>N</i> -hetiroarylguanidine hydrochlorides (8g-8z, 8aa and 8bb):	S6
3 ¹ H-NMR and ¹³ C-NMR spectra of final compounds (10a-z):	S11
4 HRMS (ESI+) Spectra of representative compounds (10a-z and 11a-s):	S56
5 HPLC traces of 11a , 10e and 10q	S69
6 X-ray crystallography data of 10b	S71
7 References:	

1 Supporting Figures, Tables, Schemes:

Synthesis of N-arylguanidines from aromatic amines

For the synthesis of *N*-arylguanidines from aromatic amines, we screened various methods[1-4] known for the reaction of arylamines and cyanamide (Table S1). All these reactions continued up to 24 hours provided *N-p*-Methoxyphenyluanidine hydrochloride in low to moderate yield. In the Sc(OTf)₃-catalyzed reaction, product formed in moderate yield. Then, reactions using microwave irradiation conditions were performed. Various catalysts, such as copper (I) and copper (II), ZnCl₂, FeCl₃, and AlCl₃ were evaluated. AlCl₃ was found to be most effective and provided very good yield of the product (80%). The reaction with AlCl₃-catalysis and performed at higher temperature (130 °C) produced the desired phenylguanidine hydrochloride in excellent yield (94%).

 Table S1: Evaluation of catalysts for the synthesis of N-4-Methoxyphenylguanidine hydrochloride under microwave irradiation[1-5]

	NH ₂ N	Brønsted acid or Lewis acid		
			NH ·HCl or HNO ₃	
	(50% W/W) Ĭ		
	(00701771	/		
S. No. ^a	Acid or Lewis acid	Solvent	Conditions	% yield
1.	Excess HCl	H ₂ O	100 °C, 24 h	48
2.	Excess HNO ₃	1, 4 Dioxane	100 °C, 24 h	53
3.	Sc(OTf) ₃ (10 mol%)	H ₂ O:1, 4 Dioxane (1:1)	100 °C, 24 h	48
4.	CuCl	EtOH	μW, 100 °C, 10 min	26
5.	CuBr	EtOH	µW, 100 °C, 10 min	35
6.	CuCl ₂	EtOH	µW, 100 °C, 10 min	40
7.	CuBr ₂	EtOH	µW, 100 °C, 10 min	42
8.	Cu(OAc) ₂	EtOH	µW, 100 °C, 10 min	32
9.	Cu(OTf) ₂	EtOH	µW, 100 °C, 10 min	45
10.	ZnI_2	EtOH	µW, 100 °C, 10 min	42
11.	$ZnCl_2$	EtOH	μW, 100 °C, 10 min	65

12.	SnCl ₂	EtOH	μW, 100 °C, 10 min	41
13.	NiCl ₂	EtOH	µW, 100 °C, 10 min	40
14.	FeCl ₃	EtOH	µW, 100 °C, 10 min	72
15.	AlCl ₃	EtOH	µW, 100 °C, 10 min	80
16.	AlCl ₃	EtOH	μW, 130 °C, 10 min	94

^aAll reactions were performed at 1 mmol scale

Table S2. Synthesis of N--(hetero)arylguanidine hydrochlorides from Ar/HetAr-amines[1-4]

^aAll reactions were performed at 2 mmol scale.

Table S3. Synthesis of N--(hetero)arylguanidine hydrochlorides from Ar/HetAr-chlorides[6, 7]

^aAll reactions were performed at 2 mmol scale.

In vitro Polß nucleotide insertion assays

Figure S1: Impact of the best active compounds on Pol β activity. (A) Schematic of the insertion assay used to monitor the gap filling activity of Pol β . (B) Lane 1 is the negative enzyme control containing the reaction mixture and the gap DNA substrate but no Pol β . Lanes 2-5 are the positive control of Pol β dGTP:C insertion products in the absence of the compound. Lanes 6-9, 10-13, and 14-17 are Pol β dGTP:C insertion products in the presence 11a at concentrations of 1, 3, and 5 μ M, respectively, and correspond to time points of 15, 30, 45, and 60 sec.

Table S4: Gap-DNA substrate used in pol β dGTP:C insertion assays. One nucleotide gap-DNA substrate with template base C was used in the nucleotide insertion assays. FAM denotes a fluorescent tag and is located at 5'-end of DNA substrates. The base at the template position is underlined.

Gap-DNA Substrate	Sequence
Townlate C	5'-FAM-CATGGGCGGCATGAACC GAGGCCCATCCTCACC-3'
Template C	3'-gtacccgccgtacttgg <u>c</u> ctccgggtaggagtgg-5'

2 Characterization data for *N*-hetiroarylguanidine hydrochlorides (8g-8z, 8aa and 8bb):

1-(Naphthalen-1-yl)guanidine hydrochloride (Table S3, 8g): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8g**; Purple semisolid (yield 78%); ¹H NMR (500 MHz, DMSO- d_6): δ 7.99-7.90 (m, 3H), 7.76 (broad singlet, 1H [NH]), 7.60-7.51 (m, 3H), 7.43 (d, J = 8 Hz, 1H). ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 157.8, 134.6, 131.3, 130.0, 128.8, 128.3, 127.4, 127.2, 126.5, 125.2, 122.7; LCMS-LTQ (ESI+) calcd for C₁₁H₁₁N₃⁺ [M+H]⁺ 186.10, found 185.93.

1-(Quinolin-8-yl)guanidine hydrochloride (Table S3, 8h): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8h**; Yellow semisolid (yield 46%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.94 (d, *J* = 3 Hz, 1H), 8.44 (d, *J* = 8 Hz, 1H), 7.90 (d, *J* = 3.5, 1H), 7.74 (broad singlet, 2H [NH]), 7.69 (d, *J* = 7.5 Hz, 1H), 7.63-7.60 (m, 2H), 7.28 (broad singlet, 2H [NH]); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 157.1, 150.4, 142.4, 137.0, 134.5, 129.3, 127.3, 125.7, 124.0, 122.6; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.92.

1-(2-Methoxynaphthalen-1-yl)guanidine hydrochloride (Table S3, 8i): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8i**; Pale pink semisolid (yield 34%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.87 (d, J = 7.8 Hz, 1H), 7.78-7.75 (m, 2H), 7.38 (d, J = 7.8 Hz, 1H), 7.33-7.30 (m, 2H), 5.99 (broad singlet, 3H [NH]), 3.90 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 157.8, 153.6, 131.9, 130.0, 129.2, 128.6, 127.8, 127.2, 124.5, 121.8, 115.0, 56.8; LCMS-LTQ (ESI+) calcd for C₁₂H₁₄N₃O⁺ [M+H]⁺ 216.26, found 215.93.

1-(6-Hydroxynaphthalen-2-yl)guanidine hydrochloride (Table S3, 8j): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8j**; Pale pink semisolid (yield 37%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.74 (s, 1H), 7.56 (dd, J = 16.8, 8.8 Hz, 2H), 7.29 (s, 1H), 7.07 – 6.97 (m, 3H), 4.54 (broad singlet, 3H [NH]); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 155.4, 155.2, 132.02, 128.9, 128.7, 127.3, 124.9, 120.5, 119.4, 109.1; LCMS-LTQ (ESI+) calcd for C₁₁H₁₂N₃O⁺ [M+H]⁺ 202.23, found 201.91.

1-(Quinolin-6-yl)guanidine hydrochloride (Table S3, 8k): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8k; Yellow semisolid (yield 81%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.88 – 8.80 (m, 1H), 8.33 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H),

7.90 (broad singlet, 2H [NH]), 7.79 (d, J = 2.2 Hz, 1H), 7.54 (ddd, J = 12.5, 8.5, 3.1 Hz, 2H), 7.23 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 156.9, 150.9, 146.3, 136.4, 134.1, 130.9, 128.8, 127.1, 122.5, 122.1; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.88.

1-(Quinolin-5-yl)guanidine hydrochloride (Table 3, 8l): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8l; Yellow semisolid (yield 76%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.82 – 8.70 (m, 1H), 8.37 (d, J = 8.5 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.37 (dd, J = 8.5, 3.9 Hz, 1H), 6.99 (d, J = 6.8 Hz, 1H), 6.00 (broad singlet, 4H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 167.6, 154.7, 150.4, 149.5, 132.9, 130.3, 125.1, 122.3, 120.4, 119.0; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.91.

1-(Isoquinolin-5-yl)guanidine hydrochloride (Table 3, 8m): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8m; Yellow semisolid (yield 65%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.35 (s, 1H), 8.55 (d, *J* = 7.3 Hz, 1H), 8.08 (d, *J* = 7.3 Hz, 1H), 7.76 (s, 1H), 7.69-7.67 (m, 2H), 7.31 (broad singlet, 4H [NH]); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 13C NMR (125 MHz, DMSO- *d*₆) δ 157.3, 153.1, 144.1, 132.6, 131.9, 129.6, 129.0, 128.2, 127.3, 115.8; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.97.

N-Carbamimidoyl-2-naphthamide hydrochloride (Table S3, 8n): Purification by column chromatography (MeOH-DCM, 1:10 V/V) afforded 8n; White solid (yield 45%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.62 (s, 1H), 8.29 – 7.91 (m, 3H), 7.87 (dd, J = 16.6, 8.2 Hz, 2H), 7.50 (dq, J = 13.0, 6.5 Hz, 2H), 6.77 (broad singlet, 2H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 176.2, 163.5, 137.1, 134.6, 132.8, 129.4, 129.1, 128.0, 127.5, 126.6, 126.3; LCMS-LTQ (ESI+) calcd for C₁₂H₁₂N₃O⁺ [M+H]⁺ 214.24, found 213.92.

1-(7-Chloroquinolin-4-yl)guanidine hydrochloride (Table S3, 80): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 80; Yellow semisolid (yield 42%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.39 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.80 (s, 1H), 7.37 (d, J = 8.5, 1H), 6.59 (d, J = 6.8 Hz, 1H), 7.03 (broad singlet, 4H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 158.2, 153.2, 144.1, 137.4, 136.7, 132.3, 131.0, 130.5, 129.5, 128.1, 127.6, 126.7, 115.9; LCMS-LTQ (ESI+) calcd for C₁₀H₁₀ClN₄⁺ [M+H]⁺ 221.66, found 220.89.

1-(Isoquinolin-4-yl)guanidine hydrochloride (Table S3, 8p): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8p; Yellow semisolid (yield 67%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.67 (d, J = 2.2 Hz, 1H), 8.40 (s, 3H), 8.03 (d, J = 2.3 Hz, 1H), 7.96 (d,

J = 8.3 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.56 (t, J = 7.2 Hz, 1H), 5.44 (s, 1H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 13C NMR (126 MHz, DMSO-D6) δ 160.2, 148.4, 145.4, 132.6, 129.1, 129.0, 128.5, 128.3, 128.3, 127.5; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.88.

1-(Isoquinolin-6-yl)guanidine hydrochloride (Table S3, 8q): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8q; Yellow semisolid (yield 61%); ¹H NMR (500 MHz, DMSO- d_6): δ 9.26 (s, 1H), 8.46 (s, 1H), 8.15 (d, J = 8.5 Hz, 1H), 8.01 – 7.70 (m, 5H), 7.49 (d, J = 8.0 Hz, 1H), 5.43 (s, 1H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 13C NMR (126 MHz, DMSO- d_6) δ 156.5, 152.4, 143.9, 137.9, 136.5, 130.0, 126.5, 124.4, 120.7, 119.2; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.90.

1-(Quinolin-3-yl)guanidine hydrochloride (Table S3, 8r): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8r; Yellow semisolid (yield 58%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 9.13 (s, 1H), 8.24 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 4H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 5.43 (s, 1H); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 157.7, 150.0, 140.3, 132.8, 131.3, 131.0, 129.3, 128.1, 122.6; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.22, found 186.88.

1-(6,7-Dimethoxyquinolin-4-yl)guanidine hydrochloride (Table S3, 8s): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8s**; Yellow semisolid (yield 37%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.91 (s, 3H), 8.39 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.80 (s, 1H), 7.37 (s, 1H), 3.86 (s, 3H), 3.82 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 132.4, 131.8, 125.9, 125.6, 124.6, 123.8, 123.3, 56.4, 56.2; LCMS-LTQ (ESI+) calcd for C₁₂H₁₅N₄O₂⁺ [M+H]⁺ 247.27, found 247.95.

1-(4-Hydroxy-8-methoxynaphthalen-1-yl)guanidine hydrochloride (Table S3, 8t): Purification by column chromatography (MeOH-DCM, 1:10 V/V) afforded 8t; Yellow semisolid (yield 32%); ¹H NMR (500 MHz, DMSO- d_6): δ 10.25 (s, 1H), 8.25 (d, J = 9.2 Hz, 1H), 7.92 (d, J = 9.2 Hz, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.44 (t, J = 8.1 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 4.90 (broad singlet, 3H [NH]), 3.96 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 159.6, 155.7, 144.8, 129.7, 129.1, 127.1, 122.7, 122.3, 117.6, 113.7, 56.0; LCMS-LTQ (ESI+) calcd for $C_{12}H_{14}N_3O_2^+$ [M+H]⁺ 232.26, found 231.96. **1-(4-Morpholinophenyl)guanidine hydrochloride (Table S2, 8u):** Purification by column chromatography (MeOH-DCM, 1:10 V/V) afforded **8u**; Pale yellow semisolid (yield 86%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.96 (broad singlet, 4H [NH]), 7.00 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.69 (t, J = 4.5 Hz, 4H), 3.05 (t, J = 4.5 Hz, 4H); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 160.2, 157.3, 149.7, 126.1, 116.3, 66.5, 49.0; LCMS-LTQ (ESI+) calcd for C₁₁H₁₆N₄O⁺ [M+H]⁺ 221.28, found: 220.94.

1-(1-Methyl-2-oxo-1,2-dihydroquinolin-6-yl)guanidine hydrochloride (Table S3, 8v): Purification by column chromatography (MeOH-DCM, 3:10 V/V) afforded 8v; Yellow semisolid (yield 61%); ¹H NMR (500 MHz, DMSO- d_6): δ 7.90 (s, 1H), 7.85 (d, J = 9.4 Hz, 1H), 7.54 (dd, J= 21.0, 8.4 Hz, 2H), 6.90 (broad singlet, 3H [NH]), 6.60 (d, J = 9.5 Hz, 1H), 3.57 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 167.8, 161.4, 136.7, 131.1, 127.0, 126.7, 122.2, 29.6; LCMS-LTQ (ESI+) calcd for C₁₁H₁₃N₄O⁺ [M+H]⁺ 217.25, found 216.93.

1-(4-Oxo-4H-pyrido[1,2-*a***]pyrimidin-3-yl)guanidine hydrochloride (Table S3, 8w):** Purification by column chromatography (MeOH-DCM, 3:10 V/V) afforded **8w**; Yellow semisolid (yield 26%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.54 (s, 1H), 7.96 (d, *J* = 14.4 Hz, 1H), 7.91 (d, *J* = 10.9 Hz, 2H), 7.04 (s, 2H), 6.79 (broad singlet, 3H [NH]); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 164.5, 145.4, 137.5, 131.6, 127.5, 126.7, 120.2, 114.8; LCMS-LTQ (ESI+) calcd for C₉H₉N₅O⁺ [M+H]⁺ 204.21, found 203.88.

1-(Quinoxalin-6-yl)guanidine hydrochloride (Table S2, 8x): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8x; Red semisolid (yield 69%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.90 (d, J = 1.5 Hz, 1H), 8.85 (d, J = 1.6 Hz, 1H), 8.26 (s, 1H), 8.06 (d, J = 9.0 Hz, 1H), 7.76 (dd, J = 9.0, 2.3 Hz, 1H), 6.90 (broad singlet, 3H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 168.9, 157.8, 134.6, 128.3, 127.4, 127.2, 126.5, 122.7; LCMS-LTQ (ESI+) calcd for C₉H₁₀N₅⁺ [M+H]⁺ 188.21, found 187.93.

1-(Quinolin-2-yl)guanidine hydrochloride (Table S3, 8y): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded **8y**; White semisolid (yield 64%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.35 (d, J = 8.9 Hz, 1H), 7.97 (s, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.79 (s, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H), 5.63 (broad singlet, 3H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 169.1, 156.4, 152.5,

131.1, 130.7, 127.7, 126.2, 125.3; LCMS-LTQ (ESI+) calcd for $C_{10}H_{11}N_4^+$ [M+H]⁺ 187.21, found 186.93.

1-(2-Methoxy-7-methyl-7*H***-pyrrolo[2,3-d]pyrimidin-4-yl)guanidine hydrochloride (Table S3, 8z):** Purification by column chromatography (MeOH-DCM, 1:10 V/V) afforded 8z; Yellow semisolid (yield 21%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.47 (d, J = 3.4 Hz, 1H), 6.71 (d, J = 3.5 Hz, 1H),) 5.87 (broad singlet, 3H [NH]), 3.81 (s, 3H), 2.44 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 161.2, 145.3, 138.3, 124.4, 106.6, 102.5, 43.9, 32.1; LCMS-LTQ (ESI+) calcd for C₁₂H₁₅N₄O⁺ [M+H]⁺ 221.24, found 220.91.

1-(Quinolin-4-yl)guanidine hydrochloride (Table S3, 8za): Purification by column chromatography (MeOH-DCM, 2:10 V/V) afforded 8aa; Yellow semisolid (yield 39%); ¹H NMR (500 MHz, DMSO- d_6): δ 8.73 (d, J = 5.1 Hz, 1H), 8.39 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 5.0 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 6.79 (broad singlet, 3H [NH]); ¹³C NMR {1H} (125 MHz, DMSO- d_6): δ 159.3, 151.0, 149.2, 143.5, 129.7, 129.6, 125.8, 123.3, 121.6; LCMS-LTQ (ESI+) calcd for C₁₀H₁₁N₄⁺ [M+H]⁺ 187.21, found 186.97.

1-(3-Acetyl-1-methyl-1*H***-indol-5-yl)guanidine hydrochloride (Table S3, 8zb):** Purification by column chromatography (MeOH-DCM, 3:10 V/V) afforded **8bb**; Red semisolid (yield 34%); ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.40 (s, 1H), 8.04 (s, 1H), 7.91 (s, 1H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 5.8 Hz, 1H), 6.90 (broad singlet, 3H [NH]), 3.84 (s, 3H), 2.37 (s, 3H); ¹³C NMR {1H} (125 MHz, DMSO-*d*₆): δ 192.6, 139.5, 137.4, 136.1, 131.1, 127.0, 126.4, 116.1, 111.9, 33.8, 27.7; LCMS-LTQ (ESI+) calcd for C₁₂H₁₅N₄O⁺ [M+H]⁺ 231.26, found 230.93.

3 ¹H-NMR and ¹³C-NMR spectra of final compounds (10a-z):

Figure S2. ¹H NMR spectrum of 10a (600 MHz, DMSO-*d*₆)

Figure S3. ¹³C NMR spectrum of **10a** (151 MHz, DMSO-*d*₆)

Figure S5. ¹³C NMR spectrum of 10b (151 MHz, DMSO-*d*₆)

Figure S6. ¹H NMR spectrum of **10c** (600 MHz, DMSO-*d*₆)

Figure S7. ¹³C NMR spectrum of 10c (151 MHz, DMSO- d_6)

Figure S8. ¹H NMR spectrum of 10d (600 MHz, DMSO- d_6)

Figure S9. ¹³C NMR spectrum of **10d** (151 MHz, DMSO-*d*₆)

Figure S11. ¹³C NMR spectrum of 10e (151 MHz, DMSO-*d*₆)

Figure S13. ¹³C NMR spectrum of 10f (151 MHz, DMSO-*d*₆)

90 80 f1 (ppm)

Figure S17. ¹³C NMR spectrum of **10h** (151 MHz, DMSO-*d*₆)

Figure S19. ¹³C NMR spectrum of 10i (151 MHz, DMSO-*d*₆)

Figure S21. ¹³C NMR spectrum of 10j (151 MHz, DMSO-*d*₆)

Figure S22. ¹H NMR spectrum of 10k (600 MHz, DMSO-*d*₆)

Figure S23. ¹³C NMR spectrum of **10k** (151 MHz, DMSO-*d*₆)

Figure S25. ¹³C NMR spectrum of **10I** (151 MHz, DMSO-*d*₆)

Figure S27. ¹³C NMR spectrum of **10m** (151 MHz, DMSO-*d*₆)

Figure S29. ¹³C NMR spectrum of 10n (151 MHz, DMSO-*d*₆)

Figure S31. ¹³C NMR spectrum of **100** (151 MHz, DMSO-*d*₆)

Figure S33. ¹³C NMR spectrum of **10p** (151 MHz, DMSO-*d*₆)

Figure S35. ¹³C NMR spectrum of **10q** (151 MHz, DMSO-*d*₆)

Figure S37. ¹³C NMR spectrum of **10r** (151 MHz, DMSO-*d*₆)

Figure S39. ¹³C NMR spectrum of 10s (151 MHz, DMSO- d_6)

Figure S41. ¹³C NMR spectrum of 10t (151 MHz, DMSO-*d*₆)

Figure S43. ¹³C NMR spectrum of **10u** (151 MHz, DMSO-*d*₆)

Figure S45. ¹³C NMR spectrum of 10v (151 MHz, DMSO-*d*₆)

Figure S47. ¹³C NMR spectrum of **10w** (151 MHz, DMSO-*d*₆)

Figure S49. ¹³C NMR spectrum of **10x** (151 MHz, DMSO-*d*₆)

Figure S51. ¹³C NMR spectrum of **10y** (151 MHz, DMSO-*d*₆)

Figure S53. ¹³C NMR spectrum of 10z (151 MHz, DMSO- d_6)

Figure S55. ¹³C NMR spectrum of NSC-666719 (11a) (101 MHz, DMSO-*d*₆)

Figure S57. ¹³C NMR spectrum of **11b** (101 MHz, DMSO-*d*₆)

Figure S59. ¹³C NMR spectrum of **11c** (101 MHz, DMSO-*d*₆)

Figure S61. ¹³C NMR spectrum of **11d** (101 MHz, DMSO-*d*₆)

Figure S63. ¹³C NMR spectrum of **11e** (101 MHz, DMSO-*d*₆)

Figure S65. ¹³C NMR spectrum of **11f** (101 MHz, DMSO-*d*₆)

Figure S67. ¹³C NMR spectrum of **11g** (101 MHz, DMSO-*d*₆)

Figure S69. ¹³C NMR spectrum of 11h (126 MHz, DMSO- d_6)

Figure S71. ¹³C NMR spectrum of **11i** (126 MHz, DMSO-*d*₆)

Figure S73. ¹³C NMR spectrum of **11***j* (126 MHz, DMSO-*d*₆)

Figure S75. ¹³C NMR spectrum of 11k (126 MHz, DMSO-*d*₆)

Figure S77. ¹³C NMR spectrum of 111 (126 MHz, DMSO-*d*₆)

Figure S79. ¹³C NMR spectrum of **11m** (126 MHz, DMSO-*d*₆)

Figure S81. ¹³C NMR spectrum of **11n** (126 MHz, DMSO-*d*₆)

Figure S83. ¹³C NMR spectrum of **110** (126 MHz, DMSO-*d*₆)

Figure S85. ¹³C NMR spectrum of **11p** (126 MHz, DMSO-*d*₆)

Figure S87. ¹³C NMR spectrum of **11q** (126 MHz, DMSO-*d*₆)

Figure S89. ¹³C NMR spectrum of **11r** (126 MHz, DMSO-*d*₆)

Figure S91. ¹³C NMR spectrum of **11s** (126 MHz, DMSO-*d*₆)

4 HRMS (ESI+) Spectra of representative compounds (10a-z and 11a-s):

SpectrumIdString

Figure S92. HRMS (ESI+) spectrum of 10a

SpectrumIdString

SpectrumIdString

Figure S94. HRMS (ESI+) spectrum of 10c

Figure S96. HRMS (ESI+) spectrum of 10e

SpectrumIdString

Figure S97. HRMS (ESI+) spectrum of 10f

Peak Spec

Figure S98. HRMS (ESI+) spectrum of 10g

SpectrumIdString

SpectrumIdString

Figure S104. HRMS (ESI+) spectrum of 10m

SpectrumIdString

Figure S105. HRMS (ESI+) spectrum of 10n

Figure S106. HRMS (ESI+) spectrum of 100

SpectrumIdString

Figure S109. HRMS (ESI+) spectrum of 10r

S60

SpectrumIdString

S62

SpectrumIdString

Figure S116. HRMS (ESI+) spectrum of 10y

Figure S117. HRMS (ESI+) spectrum of 10z

Figure S118. HRMS (ESI+) spectrum of NSC-666719 (11a)

SpectrumIdString

Figure S119. HRMS (ESI+) spectrum of 11b

SpectrumIdString

Figure S120. HRMS (ESI+) spectrum of 11c

SpectrumIdString

Figure S121. HRMS (ESI+) spectrum of 11d

Sample Spectra

Figure S123. HRMS (ESI+) spectrum of 11f

Counts vs. Mass-to-Charge (m/z)

Figure S124. HRMS (ESI+) spectrum of 11g

Sample Spectra

Counts vs. Mass-to-Charge (m/z)

Figure S125. HRMS (ESI+) spectrum of 11h

Figure S126. HRMS (ESI+) spectrum of 11i

Figure S127. HRMS (ESI+) spectrum of 11j

Sample Spectra

Figure S128. HRMS (ESI+) spectrum of 11k

Sample Spectra

Figure S130. HRMS (ESI+) spectrum of 11m

Sample Spectra

Figure S131. HRMS (ESI+) spectrum of 11n

SpectrumIdString

Figure S132. HRMS (ESI+) spectrum of 110

Sample Spectra

Figure S133. HRMS (ESI+) spectrum of 11p

Sample Spectra

Figure S135. HRMS (ESI+) spectrum of 11r

5 HPLC traces of 11a, 10e and 10q

			PeakTabl	e	
PDA Ch1 2	261nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.881	418602	12873	98.663	98.592
2	6.888	5673	184	1.337	1.408
Total		424275	13056	100.000	100.000

Figure 137. HPLC chromatogram of compound 11a (NSC-666719)

Figure 138. HPLC chromatogram of compound 10e

		r cak laule			
PDA Ch	288nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
	1 5.805	4283344	235138	100.000	100.000
To	tal	4283344	235138	100.000	100.000

Figure 139. HPLC chromatogram of compound 10q

6 X-ray crystallography data of 10b

Parameter	(Z)-2-(6-chloro-7-methyl-1,1-			
	dioxidobenzo[e][1,4,2]dithiazin-3-vl)-1-(4-			
	methoxyphenyl)guanidine (10b)			
Empirical formula	$C_{16}H_{15}ClN_4O_3S_2$			
CCDC number	2269969			
Formula weight	410.89			
Crystal system	monoclinic			
Space group	C2/c			
Crystal size/mm ³	0.05 imes 0.045 imes 0.03			
Radiation	MoKa ($\lambda = 0.71073$)			
a (Å)	25.8739(6)			
b (Å)	9.36039(17)			
c (Å)	14.3273(3)			
α (°)	90			
β (°)	94.120(2)			
γ (°)	90			
V (Å ³)	3460.96(13)			
Z	8			
$\rho_{calc}(g/cm^{-3})$	1.581			
Temperature (K)	293.0(2)			
μ/ mm ⁻¹	0.488			
2θ _{min, max} ()	6.316 to 52.736			
F (000)	1704.0			
h _{min,max} ; k _{min,max} ; l _{min,max}	$-32 \le h \le 29; -11 \le k \le 11; -16 \le l \le 17$			

 Table S4: Crystallographic table

Total no. of reflections	13987
Independent reflections	3343 [$R_{int} = 0.0343, R_{sigma} = 0.0334$]
No. of unique reflections	3343
$\mathbf{R}_{1}\left[\mathbf{I} \ge 2\sigma(\mathbf{I})\right]$	$R_1 = 0.0378, wR_2 = 0.0946$
Final R indexes [all	$R_1 = 0.0457, wR_2 = 0.1001$
data] wR ₂ (all data)	
GooF on F ²	1.095
$\Delta \rho_{max,min}/e Å^{-3}$	0.24/-0.63

7 References:

- J. Shao, W. Chen, M.A. Giulianotti, R.A. Houghten, Y. Yu, Palladium-catalyzed C–H functionalization using guanidine as a directing group: ortho arylation and olefination of arylguanidines, Org. Lett., 14 (2012) 5452-5455.
- [2] M.Q. Tran, L. Ermolenko, P. Retailleau, T.B. Nguyen, A. Al-Mourabit, Reaction of quinones and guanidine derivatives: simple access to bis-2-aminobenzimidazole moiety of benzosceptrin and other benzazole motifs, Org. Lett., 16 (2014) 920-923.
- [3] H. Huang, W. Guo, W. Wu, C.-J. Li, H. Jiang, Copper-catalyzed oxidative C (sp3)–H functionalization for facile synthesis of 1, 2, 4-triazoles and 1, 3, 5-triazines from amidines, Org. Lett., 17 (2015) 2894-2897.
- [4] H.-H. Ha, J.S. Kim, B.M. Kim, Novel heterocycle-substituted pyrimidines as inhibitors of NFκB transcription regulation related to TNF-α cytokine release, Bioorg. Med. Chem. Lett., 18 (2008) 653-656.
- [5] K. Tsubokura, T. Iwata, M. Taichi, A. Kurbangalieva, K. Fukase, Y. Nakao, K. Tanaka, Direct guanylation of amino groups by cyanamide in water: catalytic generation and activation of unsubstituted carbodiimide by scandium (III) triflate, Synlett, 25 (2014) 1302-1306.
- [6] J.W. Shaw, D.H. Grayson, I. Rozas, Cleavage of 2-(Arylamino)-4, 6-dimethoxypyrimidines To Yield Arylguanidines, Eur. J. Org. Chem., 2014 (2014) 3565-3569.
[7] J.W. Shaw, L. Barbance, D.H. Grayson, I. Rozas, Using N-substituted-2-amino-4, 6dimethoxypyrimidines in the synthesis of aliphatic guanidines, Tetrahedron Lett., 56 (2015) 4990-4992.