Supporting Information

Multi-doped ceria-based composite as a promising low-temperature electrolyte with enhanced ionic conductivity for steam electrolysis

Yuheng Liu^a, Ming Xu^b, Yunlong Zhao^b, Bahman Amini Horri^{*a}

a. School of Chemistry and Chemical Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, GU2 7XH, Guildford, Surrey, United Kingdom

b. Advanced Technology Institute, Faculty of Engineering & Physical Sciences, University of Surrey, GU2 7XH, Guildford, Surrey, United Kingdom

Characterisation details

Physicochemical characterisation

The lattice parameters were calculated from the following Bragg's equation¹:

$$\alpha = d \left(\sqrt{h^2 + k^2 + l^2} \right)$$

Eq. S1

where α is the cubic lattice parameter, d is the lattice spacing between the planes in the atomic lattice and h, k and l are the miller indices of the plane of diffraction. The Scherrer's equation was employed to estimate the size of crystallites¹:

$$D = \frac{0.9\lambda}{\beta cos^{[i0]}(\theta)}$$
Eq. S2

where D is the mean crystallite size (nm), λ is the X-ray wavelength (nm), β is the line broadening at half maximum intensity (FWHM) (rads) and θ is the Bragg angle (rads).

Theoretical densities (ho) were calculated from the following crystallographic equation:

$$\rho = \frac{\sum_{i} v_i * Z_i * M_i}{a^3 * N_A}$$

where v_i is the stoichiometric coefficient, Z_i is the number of atom i per unit cell (face-centred cubic for a ceria system), M_i is the molar mass of atom i in g·mol⁻¹, a is the lattice parameter from XRD patterns and N_A is Avogadro's number.

Eq. S3

Electrochemical characterisation

The following equation was used to calculate the bulk conductivity (σ_{GI}), grain-boundary conductivity (σ_{GB}), and total conductivity (σ_{t}) of the GDC samples:

$$\sigma = L/RA$$

Eq. S4

Where σ is the electrical conductivity, L is the thickness of the prepared GDC pellet, A is the electrode surface area contacting with the ceramic pellet (the silver coating), and R (R_{GI} , R_{GB} , and R_t) are resistances calculated by modelling analogous circuits. The electrical conductivity and activation energy were estimated by a temperature-dependent Arrhenius conductivity model as below:

$$\sigma_T = \sigma_0 e^{-Ea/kT}$$
 Eq. S5

Where Ea is the activation energy, σ_T is the temperature-dependent electrical conductivity, T is the absolute temperature, K is the Boltzmann constant (1.36 ×10⁻²³ J/K), and σ_0 is a pre-exponential factor representing the intrinsic conductivity of the electrolyte polycrystalline structure.

Journal Name

This journal is © The Royal Society of Chemistry 20xx

2 | J. Name., 2012, **00**, 1-3

Results and discussion

Table S1 Lattice parameters and particle size of sintered pellets and GDC (reference card).

Sample	Lattice parameter (Å)	Particle size (nm)
5LB1C-1	5.423	37.54
5LB1C-2	5.431	33.62
5LB1C-3	5.430	29.09
5LB-1	5.419	35.87
5LB-2	5.426	32.31
5LB-3	5.425	29.04
GDC (reference card)	5.423	-

The measurement average error: ${\leq}\pm0.1\%$.

Figure S1 (a)Nyquist plots and fitting curves of 5LB1C-1 at 450, 500, 550, 600 °C, (b) Nyquist plots and fitting curves of 5LB1C-1 at 650, 700, 750 °C,

ARTICLE

Notes and references

1. I. Unal, S. Meisuria, M. Choolaei, T. R. Reina and B. A. Horri, *Ceramics International*, 2018, 44, 6851-6860.