Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Predictions of the chiral self-assembling of TPPS₄ porphyrin aggregates perturbed

by molecular rotations

Gioacchino Schifino¹, Mariagrazia Fortino¹, Luigi Monsù Scolaro², Adriana Pietropaolo^{1*}

AFFILIATIONS

¹ Dipartimento di Scienze della salute, Università Magna Græcia di Catanzaro, Viale Europa, Catanzaro.

² Dipartimento di Scienze Chimiche, biologiche, farmaceutiche e ambientali Università degli Studi di Messina, V.le F. Stagno D'Alcontres 31, Vill. S. Agata, Messina

*Authors to whom correspondence should be addressed:

apietropaolo@unicz.it,

Contents

 Figure of the potential energy scan describing the rotations of the sulfonatophenyl substituents attached to the porphyrin macrocycle 	1
2. Figure of the chosen collective variables	1
3. Figures of the evolution of the dihedral angles4. Figures of the evolution of the distances between two porphyrins5. Figures of the evolution of the tilting angles	2 5
	6. Figures of the free-energy profiles

Figure S1. a) A sketch of the H₄TPPS₄²⁻ molecule under study. b) Adiabatic free-energy barriers related to the internal rotation of a single *meso*-sulfonatophenyl group attached to a porphyrin macrocycle.

Figure S2. a) The four pyrrole torsions identifying the collective variables for the free-energy simulations. b)-c) The stacking distance and tilting angle defining the J-aggregate.

Figure S3. Variation of the representative dihedrals (pyrrole dihedral angles ϕ_1) of a **P**- H₄TPPS₄²⁻ (replica 1) **M**- H₄TPPS₄²⁻ (replica 2) and **Rac**- H₄TPPS₄²⁻ (replica 3) monomers as a function of the simulation progress, for the free-energy simulations.

Figure S4. Variation of the representative dihedrals (pyrrole dihedral angles ϕ_1) of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ dimers as a function of the simulation progress, for the free-energy simulations.

Figure S5. Variation of the representative dihedrals (pyrrole dihedral angles ϕ_1) of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ trimers as a function of the simulation progress, for the free-energy simulations.

Figure S6. Variation of the representative dihedrals (pyrrole dihedral angles ϕ_1) of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ tetramers as a function of the simulation progress, for the free-energy simulations.

Figure S7. Variation of the representative distance between two adjacent porphyrins of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ dimers as a function of the simulation progress, for the free-energy simulations.

Figure S8. Variation of the representative distance between two adjacent porphyrins of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ trimers as a function of the simulation progress, for the free-energy simulations.

Figure S9. Variation of the representative distance between two adjacent porphyrins of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac**- H₄TPPS₄²⁻ tetramers as a function of the simulation progress, for the free-energy simulations.

Figure S10. Variation of the representative tilting angle of a **P-** H₄TPPS₄²⁻ **M-** H₄TPPS₄²⁻ and **Rac-** H₄TPPS₄²⁻ dimers as a function of the simulation progress, for the free-energy simulations.

Figure S11. Variation of the representative tilting angle of a **P-** H₄TPPS₄²⁻ **M-** H₄TPPS₄²⁻ and **Rac-** H₄TPPS₄²⁻ trimers as a function of the simulation progress, for the free-energy simulations.

Figure S12. Variation of the representative tilting angle of a **P**- H₄TPPS₄²⁻ **M**- H₄TPPS₄²⁻ and **Rac-** H₄TPPS₄²⁻ tetramers as a function of the simulation progress, for the free-energy simulations.

Figure S13. Mono-dimensional free-energy profiles computed for the $P-H_4TPPS_4^{2-}$ monomer using the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of $P-H_4TPPS_4^{2-}$, with all the four sulfonato-phenyl dihedral angles positive.

Figure S14. Mono-dimensional free-energy profiles computed for the $M-H_4TPPS_4^{2-}$ monomer using the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of $M-H_4TPPS_4^{2-}$, with all the four sulfonato-phenyl dihedral angles negative.

Figure S15. Mono-dimensional free-energy profiles computed for the **Rac**-H₄TPPS₄²⁻ monomer using the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of Rac-H₄TPPS₄²⁻, with two sulfonato-phenyl dihedral angles positive and two negative.

Figure S16. Monodimensional Free-energy profiles computed for the **P**-H₄TPPS₄²⁻ dimer within the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of **P**-H₄TPPS₄²⁻, with all the four dihedral sulfonato-phenyl angles positive.

Figure S17. Monodimensional free-energy profiles computed for the \mathbf{M} -H₄TPPS₄²⁻ dimer within the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of \mathbf{M} -H₄TPPS₄²⁻, with all the four dihedral sulfonato-phenyl angles negative.

Figure S18. Monodimensional free-energy profiles computed for the **Rac**-H₄TPPS₄²⁻ dimer within the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering the data of **Rac**-H₄TPPS₄²⁻, with two dihedral sulfonato-phenyl angles positive and two negative.

Figure S19. Mono-dimensional free-energy profiles computed for the **P**-H₄TPPS₄²⁻ trimer using the MW-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , ϕ_7 , ϕ_8 . These maps have been constructed considering the data of **M**-H₄TPPS₄²⁻, having all the four sulfonato-phenyl dihedrals positive. a) Free energy profiles of external and b) internal porphyrin rings.

Figure S20. Mono-dimensional free-energy profiles computed for the **M**-H₄TPPS₄²⁻ trimer using the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , ϕ_7 , ϕ_8 . These maps have been constructed considering data of M-H₂TPPS₄²⁻, having all the four sulfonato-phenyl dihedrals negative. a) Free energy profiles of external and b) internal porphyrin rings.

Figure S21. Mono-dimensional free-energy profiles computed for the **Rac**-H₄TPPS₄²⁻ trimer using the PB-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 . These maps have been constructed considering data of Rac-H₄TPPS₄²⁻, having the two sulfonato-phenyl dihedrals positive and the other two negative. a) Free energy profiles of external and b) internal porphyrin rings.

Figure S22. Mono-dimensional free-energy profiles computed for the **P**-H₄TPPS₄²⁻ tetramer using the MW-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , ϕ_7 , ϕ_8 . These maps have been constructed considering data of P-H₄TPPS₄²⁻, having the four dihedral sulfonato-phenyl angles positive. a) Free energy profiles of a) external and b) internal porphyrin rings.

Figure S23. Mono-dimensional free-energy profiles computed for the \mathbf{M} -H₄TPPS₄²⁻ tetramer using the MW-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , ϕ_7 , ϕ_8 . These maps have been constructed considering data of P-H₄TPPS₄²⁻, that is structure that have all four dihedral sulfonato-phenyl angles negative. a) Free energy profiles of external porphyrin rings and b) free energy profiles of internal porphyrin rings.

Figure S24. Mono-dimensional free-energy profiles computed for the **Rac**-H₄TPPS₄²⁻ tetramer using the MW-MetaD approach, as a function of the pyrrole dihedral angles ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , ϕ_5 , ϕ_6 , ϕ_7 , ϕ_8 . These maps have been constructed considering data of P-H₄TPPS₄²⁻, that is structure that have all four dihedral sulfonato-phenyl angles positive. a) Free energy profiles of external porphyrin rings and b) free energy profiles of internal porphyrin rings.