Supplementary Information

Design Strategy and Molecular Level Understanding: Hole Transport Materials with

Suitable Transition Dipole Orientation for OLEDs

Krishan Kumar, Sunil Kumar, Anirban Karmakar, Dipanshu Sharma, Feng-Rong Chen,

Mangey Ram Nagar, Jwo-Huei Jou, Subrata Banik, Subrata Ghosh

Contents

1. General	
2. Synthesis scheme and procedures	
3. Copies of ¹ H and ¹³ C NMR spectra	
4. HRMS	
5. Theoretical and experimental results	
6. TD-DFT analysis	
7. Cartesian coordinates	
8. Cyclic voltammetry graphs	
9. TGA/DSC graphs	
10. Single crystal analysis	
11. Hole-only device fabrication	S53
12. References	

1. General

General information on	instrumentation and experimental work
Instrument	Characterization
Jeol EXC NMR spectrometer	Both, proton (¹ H) and carbon (¹³ C) NMR Spectra.
Bruker Maxix Impact HD	Experimentally evaluated mass (HRMS) of the
instrument	compounds.
	The theoretical mass of the compounds was
	calculated using isotope pattern software.
Shimadzu UV-2450 and Carry	The absorption and photoluminescence studies were
Eclips Fluorescence Spectrometer	carried out using 5 μ M in DCM solution. Excitation
Agilent	wavelengths for PhMeO, TolPz, PhPz, PhMePz,
	and TolMePz were 327, 327, 329, 326, and 327 nm,
	respectively.
NETZSCH STA448 F1 JUPITOR	Thermogravimetric analysis (TGA) was performed
	at a heating rate of 10 °C/min under N ₂ atmosphere.
Perkin Elmer DSC 8000	Differential scanning calorimetry (DSC) analysis
instruments	was performed at a heating rate of 10 °C/min under
	N ₂ atmosphere.
Metrohm Auto lab	Cyclic Voltammetry (CV) analysis
Agilent Technologies X-ray	Single crystal diffraction studies
diffractometer	

The starting substrates **MePz**, **MePzCHO**, and **HPzCHO** were synthesized following literature reported procedure.¹ The final compounds were synthesized following a modified literature procedure.²

Scheme S1. Synthesis routes for PhMeO, PhPz, PhMePz, TolPz and TolMePz

Synthesis procedure for **PhMeO**³:

A mixture of 4-methoxyacetophenone (3 eq), 4-methoxybenzaldehyde (1 eq), AcOH (15 ml), and ammonium acetate (8 eq) in 100 ml round-bottom flask was refluxed at 130 °C for 12h. After completion of the reaction, it was quenched with water and extracted with DCM. Finally, the DCM extract was washed with water followed by drying over sodium sulfate. The organic solvent was evaporated using rota-evaporator and the crude solid was purified by precipitation in methanol. Yield: 60%; ¹H NMR (500 MHz, CDCl₃): 8.13 (d, J = 8.90 Hz, 4H), 7.70 (s, 2H), 7.66 (d, J = 8.25 Hz, 2H), 7.01 (d, J = 8.25 Hz, 6H), 3.85 and 3.84 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 160.34, 160.25, 156.78, 149.32, 132.37, 131.45, 128.27, 128.21, 115.10, 114.37, 113.92, 55.32, 55.29; HRMS (ESI); Calculated for C₂₆H₂₄NO₃ [M+H]⁺: 398.1750, found: 398.1756.

Synthesis procedure for TolPz:

A mixture of 4-methylacetophenone (3 eq), **HPzCHO** (1 eq), AcOH (15 ml), and ammonium acetate (8 eq) in 100 ml round-bottom flask was refluxed at 130 °C for 12h. After completion of the reaction, it was quenched with water and extracted with DCM. Finally, the DCM extract was washed with water followed by drying over sodium sulfate. Column chromatography was used to purify the crude product using 6% ethyl acetate-hexane mixture as the eluent; Yellow color solid; Yield: 40%; ¹H NMR (500 MHz, DMSO-*d6*): 8.89 (s, 1H), 8.21 (d, J = 6.85 Hz, 4H), 8.03 (s, 2H), 7.70-7.68 (m, 2H), 7.31 (d, J = 6.9 Hz, 4H), 7.02-6.94 (m, 2H), 6.85-6.72 (m, 3H), 2.36 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d6*): 156.20, 148.08, 142.88, 141.26, 138.53, 136.21, 130.92, 129.22, 127.64, 126.76, 126.61, 126.27, 124.86, 124.73, 122.11, 117.22, 116.16, 114.61, 114.57, 20.89; HRMS (ESI); Calculated for C₃₁H₂₃N₂S [M-H]: 455.1576, found: 455.1570.

Synthesis procedure for **PhPz**:

A mixture of acetophenone (3 eq), **HPzCHO** (1 eq), AcOH (15 ml), and ammonium acetate (8 eq.) in 100 ml round-bottom flask was refluxed at 130 °C for 12h. After completion of the reaction, it was quenched with water and extracted with DCM. Finally, the DCM extract was washed with water followed by drying over sodium sulfate. Column chromatography was used to purify the crude product using 8% ethyl acetate-hexane mixture as the eluent; Yellow color solid; Yield: 45%; ¹H NMR (500 MHz, DMSO-*d6*): 8.89 (s, 1H), 8.32 (d, J = 6.85 Hz, 4H), 8.11 (s, 2H), 7.74-7.71 (m, 2H), 7.53-7.45 (m, 6H), 7.02-6.94 (m, 2H), 6.84-6.72 (m, 3H); ¹³C NMR (125 MHz, DMSO-*d6*): 156.87, 148.81, 143.49, 141.73, 139.46, 131.27, 129.65, 129.18, 128.20, 127.47, 127.23, 126.83, 125.46, 122.69, 117.77, 116.67, 155.82, 115.16, 115.11; HRMS (ESI): Calculated for C₂₉H₂₁N₂S [M+H]⁺: 429.1419, found: 429.1414.

Synthesis procedure for **PhMePz**:⁴

A mixture of acetophenone (3 eq), **MePzCHO** (1 eq), AcOH (15 ml), and ammonium acetate (8 eq) in 100 ml round-bottom flask was refluxed at 130 °C for 12h. After completion of the reaction, it was quenched with water and extracted with DCM. Finally, the DCM extract was washed with water followed by drying over sodium sulfate. Column chromatography was used to purify the crude product using 5% ethyl acetate-hexane mixture as the eluent; Yellow color solid; Yield: 40%; ¹H NMR (500 MHz, CDCl₃): 8.16-8.15 (m, 4H), 7.75 (s, 2H), 7.49-7.39 (m, 8H), 7.19-7.12 (m, 2H), 6.93-6.90 (m, 1H), 6.79-6.75 (m, 2H), 3.29 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 157.32, 148.57, 146.41, 145.06, 139.47, 132.71, 128.93, 128.60, 127.56, 127.14, 127.03, 126.11, 125.34, 124.07, 122.74, 122.59, 116.08, 114.23, 114.18, 35.26; HRMS (ESI): Calculated for $C_{30}H_{23}N_2S$ [M+H]⁺: 443.1576, found: 443.1579.

Synthesis procedure for TolMePz:

A mixture of 4-methylacetophenone (3 eq), **MePzCHO** (1 eq) AcOH (15 ml) and ammonium acetate (8 eq.) in 100 ml round-bottom flask was refluxed at 130 °C for 12h. After completion

of the reaction, it was quenched with water and extracted with DCM. Finally, the DCM extract was washed with water followed by drying over sodium sulfate. Column chromatography was used to purify the crude product using 3% ethyl acetate-hexane mixture as the eluent; Yellow color solid; Yield: 45%; ¹H NMR (500 MHz, CDCl₃): 7.98 (d, J = 6.85 Hz, 4H), 7.65 (s, 2H), 7.40 (s, 2H), 7.20 (d, J = 7.55 Hz, 4H), 7.08-7.06 (m, 2H), 6.87-6.84 (m, 1H), 6.77-6.71 (m, 2H), 3.27 (s, 3H), 2.32 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): 157.30, 148.49, 146.40, 145.18, 138.86, 136.83, 133.08, 129.33, 127.59, 127.20, 126.93, 126.17, 125.44, 124.10, 122.76, 122.70, 115.58, 114.27, 114.20, 35.35, 21.29; HRMS (ESI): Calculated for C₃₂H₂₇N₂S [M+H]⁺: 471.1889, found: 471.1889.

3. Copies of ¹H and ¹³C NMR spectra

Fig. S1. ¹H and ¹³C NMR spectra of PhMeO

Fig. S2. ¹H and ¹³C NMR spectra of TolPz

Fig. S3. ¹H and ¹³C NMR spectra of PhPz

Fig. S4. ¹H and ¹³C NMR spectra of PhMePz

Fig. S5. ¹H and ¹³C NMR spectra of TolMePz

4. HRMS

Fig. S6. HRMS spectra of PhMeO

Fig. S7. HRMS spectra of TolPz

Fig. S8. HRMS spectra of PhPz

Fig. S9. HRMS spectra of PhMePz

Fig. S10. HRMS spectra of TolMePz

5.Theoretical and experimental results

Molecule	НОМО				LUMO			
	Exp.	B3LYP	PBE0	CAM-	Exp.	B3LYP	PBE0	CAM-B3LYP
	1			B3LYP	1			
PhMePz	-5.12	-5.45	-5.68	-6.79	-1.50	-1.70	-1.59	-0.48
PhMeO	-5.34	-5.84	-6.06	-7.16	-1.68	-1.49	-1.38	-0.28
PhPz	-5.00	-5.42	-5.64	-6.76	-1.36	-1.69	-1.59	-0.48
TolMePz	-5.13	-5.45	-5.67	-6.79	-1.51	-1.65	-1.53	-0.43
TolPz	-5.00	-5.41	-5.63	-6.75	-1.37	-1.64	-1.54	-0.43
RMSD)	0.37	0.60	1.69		0.27	0.27	1.19

 Table S1: Computed HOMO and LUMO energies (in eV) with three different density

 functionals.

Table S2: Computed λ_{max} (in nm) with three different density functionals.

Molecule	Exp.	B3LYP	PBE0	CAM- B3LYP
PhMeO	280	297.72	288.17	260.19
PhMePh	270	285.79	274.01	252.24
PhPz	271	284.62	272.9	253.69
TolMePz	269	285.31	274.72	252.73
TolPz	269	284.3	274.28	253.69
RI	MSD	14.9	5.4	20.0

Table S3: Comparison between gas-phase and solvent corrected HOMO/LUMO energies

 against experimental values. The optimization in each phase were carried out using B3LYP/6

 311G(d,p) model.

	HOMO (eV)				LUMO (eV)		
	Gas-phase	DCM solvent	Experimental	Gas-phase	DCM solvent	Experimental	
PhMeO							
	-5.41	-5.45	-5.12	-1.55	-1.70	-1.50	
PhMePh							
	-5.37	-5.45	-5.13	-1.46	-1.65	-1.51	
PhPz							
	-5.61	-5.84	-5.34	-1.26	-1.49	-1.68	
TolMePz							
	-5.35	-5.41	-5.00	-1.47	-1.64	-1.37	
TolPz							
	-5.38	-5.42	-5.00	-1.55	-1.69	-1.36	

6.TD-DFT analysis

6.1. Transition energies, oscillator strengths and MO involved of some intense transitions:

Table S4. TD-DFT analysis for electronic transitions of **PhMePz**. Transitions with oscillator strengths (f) and MOs with coefficients greater than 0.15 and 0.20, respectively, are reported. Here, H and L stand for HOMO and LUMO, respectively.

S.No.	Transition Energy	Nature of transitions	f
	(eV)/Wavelength (nm)		
		MOs involved Coefficients	
1.	3.2585/ 380.50	H→L 0.68770	0.3190
2.	4.0637/ 305.10	H-1→L 0.66574	0.2975
3.	4.3383 / 285.79	H-2→L 0.46907	0.9661
		H→L+4 0.40603	
5.	4.9059 / 252.73	H-5→L 0.25111	0.5176
		H-3→L+1 0.56175	
6.	4.9385 / 251.06	H-4→L 0.41683	0.2461
		H-3→L 0.30761	
		H→L+8 0.27256	

Table S5. TD-DFT analysis for electronic transitions of **TolMePz**. Transitions with oscillator strengths (f) and MOs with coefficients greater than 0.24 and 0.20, respectively, are reported. Here, H and L stand for HOMO and LUMO, respectively.

S.No.	Transition Energy	Nature of transitions	f
	(eV)/Wavelength (nm)		
		MOs involved Coefficients	
1.	3.2913 / 376.70	H→L 0.68594	0.3299
2.	3.9517 / 313.75	H-1→L 0.65970	0.3411
3.	4.3457 / 285.31	H-2→L 0.41403	1.1506
		H→L+4 0.35836	
4.	4.6191 / 268.41	H-3→L+1 0.62013	0.2453
5.	4.6937 / 264.15	H-3→L+1 0.57764	0.4499

Table S6. TD-DFT analysis for electronic transitions of **PhMeO**. Transitions with oscillator strengths (f) and MOs with coefficients greater than 0.21 and 0.20, respectively, are reported. Here, H and L stand for HOMO and LUMO, respectively.

S.No.	Transition Energy	Nature of transitions	f
	(eV)/Wavelength (nm)		
		MOs involved Coefficients	
1.	3.7573 / 329.98	H→L 0.68064	0.3097
2.	4.1645 / 297.72	H-2→L 0.28713	1.2231
		H-1→L 0.41813	
		H→L+1 0.47997	
3.	4.3151 / 287.33	H-1→L+1 0.66452	0.5455
4.	4.4433 / 279.04	H-2→L+1 0.68590	0.2113
5.	5.0604 / 245.01	H→L+5 0.66441	0.2553
6.	5.4141 / 229.00	H-1→L+5 0.65587	0.3034

Table S7. TD-DFT analysis for electronic transitions of **TolPz**. Transitions with oscillator strengths (f) and MOs with coefficients greater than 0.24 and 0.20, respectively, are reported. Here, H and L stand for HOMO and LUMO, respectively.

S.No.	Transition Energy	Nature of transitions	f
	(eV)/Wavelength (nm)		
		MOs involved Coefficients	
1.	3.2689 / 379.29	H→L 0.68527	0.3935
2.	3.9554 / 313.46	H-1→L 0.66941	0.3422
3.	4.0857 / 303.46	H→L+3 0.65855	0.3422
4.	4.3610 / 284.30	H-2→L 0.45707 H-1→L 0.41607	1.2112
5.	4.6455 / 266.89	H-3→L+1 0.27729 H -2→L+1 0.59247	0.3183
6.	4.6977 / 263.92	H-1→L+1 0.50033	0.2773

Table S8. TD-DFT analysis for electronic transitions of **PhPz**. Transitions with oscillator strengths (f) and MOs with coefficients greater than 0.11 and 0.20, respectively, are reported. Here, H and L stand for HOMO and LUMO, respectively.

S.No.	Transition Energy	Nature of transitions	f
	(eV)/Wavelength (nm)		
		MOs involved Coefficients	
1.	3.2383 / 382.87	H→L 0.68728	0.3829
2.	4.0823 / 303.71	H→L+3 0.56303	0.2529
3.	4.3561 / 284.62	H-2→L 0.54626	1.0230
4.	4.9133 / 252.35	H-4→L 0.25215 H-3→L+1 0.57304	0.5093
5.	5.0291 / 246.53	H-5→L 0.25830	0.1627
6.	5.0417 / 245.92	H-2→L+2 0.53671	0.1755

6.2. Calculated UV-visible spectrum

The plots were obtained using GaussView software, where the molar absorptivity of the electronic transitions (in Lmol⁻¹cm⁻¹) is plotted with a Gaussian band shape to match the conventional UV-vis spectrum of experiments. The left-axis of the spectra presented below is the molar absorptivity, and the right-axes are the oscillator strength. The relation between the oscillator strength (*f*) value and molar absorptivity with a Gaussian fitting is given by⁵

$$\varepsilon_{i}(\tilde{v}) = \frac{\sqrt{\pi}e^{2}N}{1000\ln(10)c^{2}m_{e}} \frac{f_{i}}{\sigma} exp\left[-(\frac{\tilde{v}-\tilde{v}_{i}}{\sigma})^{2}\right]$$

Here, N, c, e, m_e , are Avogadro's number, speed of light, charge of an electron and mass of an electron, respectively. \tilde{v} and \tilde{v}_i are the energy of incident radiation and excitation energy in wavenumbers, respectively. σ is the standard deviation in wavenumber unit. As default, the GaussView uses σ value equal to 0.4 eV.

Fig. S11. Computed UV-vis spectrum of **PhMeO** with TD-DFT. The left-axis is the molar absorptivity fitted with a Gaussian band width of HWFM value 0.4 eV

Fig. S12. Computed UV-vis spectrum of **TolPz** with TD-DFT. The left-axis is the molar absorptivity fitted with a Gaussian band width of HWFM value 0.4 eV.

Fig. S13. Computed UV-vis spectrum of **PhPz** with TD-DFT. The left-axis is the molar absorptivity fitted with a Gaussian band width of HWFM value 0.4 eV.

Fig. S14. Computed UV-vis spectrum of **TolMePz** with TD-DFT. The left-axis is the molar absorptivity fitted with a Gaussian band width of HWFM value 0.4 eV.

Fig. S15. Computed UV-vis spectrum of **PhMePz** with TD-DFT. The left-axis is the molar absorptivity fitted with a Gaussian band width of HWFM value 0.4 eV.

Table S9: Charge transfer distances and magnitude of charge transfer for each molecule:computed with CAM-B3LYP method and 6-311G(d,p) basis set.

Molecule	S ₁		S_2		T ₁		T ₂	
	D _{CT} (Å)	Q _{CT}						
PhMeO	1.64	0.55	0.30	0.46	0.50	0.33	1.04	0.44
PhMePh	2.27	0.68	2.39	0.62	1.83	0.45	0.11	0.32
PhPz	2.01	0.64	2.55	0.62	1.62	0.46	0.33	0.31
TolMePz	2.16	0.68	2.16	0.58	1.69	0.42	0.11	0.34
TolPz	1.88	0.64	2.52	0.62	1.53	0.45	0.34	0.32

7. Cartesian coordinates

Cartesian coordinates of the optimized structures of PhMePz

atomic num	ber X-coordina	ate Y-coordina	te Z-coordinate
6	7.391575278	1.622462748	0.248855138
6	7.645239674	0.433893003	0.925551662
6	6.726109963	-0.613809170	0.888386369
6	5.545583891	-0.504993260	0.140610304
6	5.303904196	0.699499678	-0.544983800
6	6.206873362	1.756364743	-0.473961518
7	4.611127541	-1.563627514	0.061723700
6	3.235328935	-1.270485882	0.084365613
6	2.740744961	-0.141546162	-0.597111580
16	3.863816201	0.823934851	-1.592404078
6	5.041801958	-2.895499307	0.476003506
6	2.310404644	-2.075919723	0.764251557
6	0.951481379	-1.781424932	0.742102960
6	0.460767138	-0.652051762	0.076965837
6	1.388563589	0.171838095	-0.578220862
6	-0.985248100	-0.327520236	0.068775935
6	-1.955747739	-1.333899663	0.026204216

6	-3.312092249	-0.991768119	0.006478785
7	-3.722210936	0.284597208	0.054768517
6	-2.807859511	1.264667748	0.110380217
6	-1.434866524	0.996490846	0.104234074
6	-3.327612198	2.659578384	0.161074173
6	-4.375965738	-2.032631198	-0.050718609
6	-4.589144084	2.954545354	-0.376430400
6	-5.089949119	4.252107162	-0.345859671
6	-4.344065642	5.280243120	0.230715990
6	-3.093206145	4.998185032	0.777195418
6	-2.588729895	3.700553828	0.741907588
6	-4.144078288	-3.292346720	-0.621997600
6	-5.152005856	-4.252539701	-0.661987710
6	-6.409731450	-3.972627098	-0.130353447
6	-6.653730687	-2.721252441	0.435659849
6	-5.648993380	-1.759630936	0.471093539
1	8.100246116	2.441008632	0.283968341
1	8.556100566	0.316861224	1.501139444
1	6.933192103	-1.516609020	1.446555001
1	5.987408105	2.677696434	-1.001059736

1	5.061170772	-3.028014635	1.565245146
1	4.368306919	-3.635877948	0.045812537
1	6.041185478	-3.081225821	0.084326434
1	2.648618038	-2.936258597	1.325239106
1	0.272245354	-2.424731193	1.288523894
1	1.049282580	1.046188893	-1.120975905
1	-1.656716396	-2.372878241	-0.000243776
1	-0.722829806	1.809831071	0.135633135
1	-5.165562504	2.153224412	-0.820279294
1	-6.063712289	4.462304599	-0.774082189
1	-4.735526788	6.290857390	0.256848979
1	-2.510685633	5.787440066	1.238879512
1	-1.624346174	3.497991963	1.192478234
1	-3.180638816	-3.521250425	-1.061835606
1	-4.955758584	-5.217277356	-1.116093493
1	-7.193546357	-4.720958972	-0.160320424
1	-7.629047326	-2.494633713	0.851800716
1	-5.834974682	-0.786334770	0.906334516

Cartesian coordinates of the optimized structures of TolMePz

atomic nui	nber X-coordi	nate Y-coordin	nate Z-coordinate
6	7.820894770	1.458338720	0.231088479
6	8.057511667	0.274730915	0.922506242
6	7.124223978	-0.760747102	0.896828450
6	5.946151065	-0.645000967	0.146206884
6	5.721836957	0.554242841	-0.554461274
6	6.639044801	1.599494418	-0.495029554
7	4.997354684	-1.691456507	0.078836198
6	3.625503846	-1.378763734	0.096731758
6	3.147369278	-0.251783346	-0.599372214
16	4.284997819	0.685102141	-1.605558943
6	5.409064945	-3.023869966	0.510168419
6	2.688893496	-2.162106287	0.786194278
6	1.334290826	-1.848254965	0.759666882
6	0.859889243	-0.720560932	0.080007019
6	1.799780032	0.081198197	-0.585280018
6	-0.581518795	-0.374934340	0.067408368
6	-1.566151351	-1.367703802	0.036808509

6	-2.917947858	-1.006374888	0.012593927
7	-3.308539343	0.277019626	0.046010573
6	-2.380138400	1.245057471	0.090159932
6	-1.010951377	0.956005670	0.086825929
6	-2.879117995	2.646567238	0.125286979
6	-3.995865546	-2.031335322	-0.032515475
6	-4.142020752	2.956977146	-0.398602680
6	-4.620799414	4.261700092	-0.383981473
6	-3.866611686	5.306831869	0.163199799
6	-2.609491249	4.994537535	0.691523627
6	-2.122273872	3.691147257	0.673802497
6	-3.785408712	-3.306827756	-0.572513580
6	-4.810055418	-4.249117961	-0.602355742
6	-6.078900417	-3.957519596	-0.092699264
6	-6.289249961	-2.678714666	0.439411581
6	-5.272474422	-1.732694142	0.466552015
6	-4.404235990	6.715939812	0.208424732
6	-7.182098612	-4.986807266	-0.097745072
1	8.540618321	2.267526549	0.257215815
1	8.965990362	0.152368933	1.500754055

1	7.318203001	-1.659362981	1.466325259
1	6.432877080	2.517176622	-1.033740951
1	5.425530930	-3.143157482	1.601016279
1	4.725750841	-3.760099085	0.088409201
1	6.406202525	-3.228283384	0.122054474
1	3.014499120	-3.020126698	1.358141072
1	0.645588751	-2.474660749	1.313805099
1	1.473214401	0.953444145	-1.139076090
1	-1.282011077	-2.411118034	0.023129420
1	-0.286625246	1.758788904	0.108266132
1	-4.738616135	2.160978970	-0.825386490
1	-5.596753161	4.474367232	-0.808829444
1	-2.003057477	5.781353734	1.128538477
1	-1.151722431	3.489830118	1.111980648
1	-2.824305483	-3.565671177	-1.001165133
1	-4.620926136	-5.224672704	-1.038464667
1	-7.265556638	-2.421398535	0.838238041
1	-5.453244154	-0.747728167	0.877434274
1	-4.977986479	6.885715696	1.126267191
1	-3.597258259	7.451617052	0.187535199

1	-5.071605877	6.914284441	-0.633258291
1	-7.303532831	-5.434820742	0.894504780
1	-8.141818016	-4.539815191	-0.369307222
1	-6.969986749	-5.795026510	-0.800411218

Cartesian coordinates of the optimized structures of PhMeO

atomic number X-coordinate Y-coordinate Z-coordinate

6	0.730892975	-1.315388260	-0.030113467
6	-0.657408840	-1.133349434	-0.027985057
7	-1.210300183	0.089803600	-0.003675414
6	-0.414962692	1.171588841	-0.003144076
6	0.980104974	1.061125439	-0.047241392
6	1.579070965	-0.203136699	-0.050035159
6	3.052715285	-0.358913026	-0.073115771
6	-1.088938424	2.496131460	0.008912263
6	-1.591432503	-2.289237448	-0.018013703
6	-1.219313918	-3.552355194	-0.510444110
6	-2.101802433	-4.619922255	-0.492497233
6	-3.394782978	-4.460957261	0.024659440
6	-3.786316695	-3.210452439	0.514807934
6	-2.889338498	-2.145722467	0.484458279

6	3.889316136	0.540416646	0.597618426
6	5.275747526	0.401817417	0.586687952
6	5.860844994	-0.657116565	-0.114892268
6	5.038317199	-1.566251381	-0.794983849
6	3.661854413	-1.418189053	-0.769709915
6	-2.406980296	2.622991651	-0.443483851
6	-3.064347903	3.850479749	-0.453674019
6	-2.403681088	4.994784380	0.005881857
6	-1.086507394	4.884425671	0.472246893
6	-0.444551844	3.656943071	0.471260171
8	7.198174223	-0.887788457	-0.196295783
6	8.087974231	0.010875669	0.467302663
8	-2.946344578	6.241801918	0.043155161
6	-4.288784511	6.415506149	-0.411078123
8	-4.184726457	-5.568330469	0.003036861
6	-5.515490110	-5.467710008	0.510585883
1	1.148420482	-2.311738800	0.021792551
1	1.594085496	1.948648752	-0.117978912
1	-0.234635263	-3.702939306	-0.936645810
1	-1.814721759	-5.588946897	-0.882991492

1	-4.776461955	-3.056070983	0.921801034
1	-3.194587319	-1.179158076	0.863742675
1	3.456162475	1.356042895	1.164935860
1	5.881605940	1.113889941	1.130134021
1	5.503296014	-2.376488309	-1.343737529
1	3.049433804	-2.122395053	-1.320722631
1	-2.920741252	1.739258469	-0.799086841
1	-4.079973412	3.903304624	-0.821756138
1	-0.589616123	5.774641279	0.839021535
1	0.565681891	3.602285163	0.858919446
1	7.914202424	0.016542062	1.547589543
1	9.089706764	-0.362098389	0.264216197
1	7.991411766	1.027491256	0.074243831
1	-4.990289993	5.826637865	0.187658304
1	-4.507796919	7.474172227	-0.287424868
1	-4.389763416	6.144254654	-1.466404752
1	-5.517236236	-5.194302586	1.570128240
1	-6.103757989	-4.740193221	-0.056965225
1	-5.952340534	-6.457234739	0.392030355

Cartesian coordinates of the optimized structures of TolPz

6	8.075508826	0.106347308	-1.616068720
6	8.299384617	-0.993289753	-0.790570257
6	7.339953403	-1.379467164	0.141482298
6	6.155699012	-0.648845233	0.286357249
6	5.942246266	0.468660063	-0.535984855
6	6.887938399	0.826659918	-1.494102815
7	5.196792339	-1.025338674	1.239321237
6	3.826193821	-0.841798372	1.038989728
6	3.351174217	0.253720650	0.298954941
16	4.503249959	1.497549215	-0.269300674
6	2.894553540	-1.737769867	1.575439920
6	1.532170779	-1.544911266	1.386822648
6	1.049897685	-0.466944305	0.631967808
6	1.988670883	0.420261325	0.083029254
6	-0.402610437	-0.266834093	0.413444017
6	-1.271752828	-1.353142220	0.266895538
6	-2.634841093	-1.129122631	0.043596302
7	-3.150207340	0.108987753	-0.009778097

atomic number X-coordinate Y-coordinate Z-coordinate

6	-2.336448415	1.165070329	0.143190818
6	-0.959534235	1.014313425	0.342317477
6	-3.589461737	-2.257934698	-0.128401136
6	-2.967935528	2.510582486	0.070680557
6	-4.164346740	2.688593759	-0.638586413
6	-4.762448971	3.939672453	-0.728723158
6	-4.199504964	5.060895679	-0.106489268
6	-3.010092418	4.880395632	0.606918213
6	-2.403269166	3.630946651	0.695309769
6	-3.179349121	-3.511221405	-0.603609612
6	-4.090776883	-4.551976176	-0.755040762
6	-5.442474127	-4.385541793	-0.435655338
6	-5.851381188	-3.130239715	0.030951006
6	-4.946745018	-2.085575604	0.178792368
6	-4.869883071	6.410692435	-0.180153021
6	-6.422669357	-5.524794157	-0.569428762
1	8.813654625	0.402791642	-2.351294414
1	9.216325332	-1.564222817	-0.877958540
1	7.505596306	-2.249565755	0.767976299
1	6.699441282	1.681587738	-2.133255972

1	5.435511848	-1.853436568	1.766908256
1	3.245625978	-2.585048732	2.154777737
1	0.837858028	-2.238950332	1.844569896
1	1.655258592	1.251365338	-0.526890810
1	-0.888893258	-2.363252348	0.316818409
1	-0.328431938	1.886016090	0.448578729
1	-4.612323306	1.832032401	-1.125706548
1	-5.681152963	4.050035956	-1.296241188
1	-2.552713409	5.728719330	1.105862968
1	-1.493188873	3.531317609	1.275244006
1	-2.146510692	-3.675501047	-0.887716611
1	-3.746265815	-5.507133554	-1.138158655
1	-6.895058002	-2.968801035	0.281799874
1	-5.281229718	-1.120340538	0.536829665
1	-5.625873150	6.515071801	0.605986665
1	-4.149655033	7.221316996	-0.050952267
1	-5.376712053	6.551020875	-1.137733752
1	-6.510070864	-6.077804808	0.372402877
1	-7.420691775	-5.163206814	-0.827373926
1	-6.105791882	-6.234764443	-1.336418663

Cartesian coordinates of the optimized structures of PhPz.

6	-7.674299178	0.240232860	1.570746832
6	-7.901480580	-0.869206742	0.759375739
6	-6.937894954	-1.277724530	-0.158773154
6	-5.745758362	-0.560140717	-0.303918111
6	-5.528643921	0.566928066	0.504156268
6	-6.479009060	0.947638515	1.448766528
7	-4.782277333	-0.959400300	-1.243044385
6	-3.411990727	-0.786139022	-1.033736950
6	-2.932680311	0.314798217	-0.304307269
16	-4.077257638	1.577811645	0.235815102
6	-2.484555670	-1.698113430	-1.550319299
6	-1.122191018	-1.516591764	-1.351445191
6	-0.636148699	-0.433687663	-0.606134205
6	-1.570634234	0.470627467	-0.078111396
6	0.815921842	-0.246375326	-0.375703749
6	1.672165266	-1.339807642	-0.206410919
6	3.034692021	-1.127131808	0.028083326
7	3.563718121	0.105132467	0.070617939

atomic number X-coordinate Y-coordinate Z-coordinate

6	2.762778520	1.167048309	-0.104079381
6	1.386689528	1.029350954	-0.314958173
6	3.975999015	-2.264579143	0.225902996
6	3.408728910	2.507727590	-0.042516269
6	4.590978069	2.679888349	0.692157010
6	5.204871277	3.925812676	0.771107631
6	4.654545020	5.023686628	0.109549030
6	3.485703478	4.863280754	-0.632704613
6	2.867527378	3.617568040	-0.707571700
6	3.543295785	-3.499090889	0.731732959
6	4.439206928	-4.551168758	0.904884470
6	5.783737942	-4.389968032	0.574551499
6	6.226905737	-3.164871276	0.075993444
6	5.333539762	-2.111713706	-0.092313497
1	-8.415883994	0.554171211	2.295169658
1	-8.824416291	-1.430316573	0.847186073
1	-7.106179299	-2.155408628	-0.773904777
1	-6.287911301	1.809930175	2.077167692
1	-5.024888940	-1.792059923	-1.761567074
1	-2.838810120	-2.549091074	-2.122174878

1	-0.430864788	-2.223482746	-1.793745982
1	-1.234377616	1.306552752	0.523637852
1	1.279416119	-2.346506106	-0.247486306
1	0.766592156	1.906719547	-0.438116735
1	5.015045275	1.824439766	1.201808899
1	6.113492575	4.041158134	1.351494204
1	5.134069976	5.994146278	0.168948834
1	3.056942930	5.707175308	-1.161336296
1	1.972429978	3.508722519	-1.308448233
1	2.507303783	-3.637216708	1.017579084
1	4.086950789	-5.494863945	1.305911129
1	6.480363012	-5.209831584	0.708025237
1	7.270950542	-3.030345063	-0.184045413
1	5.67381364	5 -1.15867270	9 -0.476182623

8. Cyclic voltammetry graphs

Fig. S16. Cyclic Voltammetry graph of **PhMeO** (Ag/AgCl (reference electrode), 0.1M tetrabutylammonium hexafluorophosphate (supporting electrolyte)).

Fig. S17. CV graph of **TolPz** (Ag/AgCl (reference electrode), 0.1M tetrabutylammonium hexafluorophosphate (supporting electrolyte)).

Fig. S18. CV graph of **PhPz** (Ag/AgCl (reference electrode), 0.1M tetrabutylammonium hexafluorophosphate (supporting electrolyte)).

Fig. S19. CV graph of **TolMePz** (Ag/AgCl (reference electrode), 0.1M tetrabutylammonium hexafluorophosphate(supporting electrolyte)).

Fig. S20. CV graph of **PhMePz** (Ag/AgCl (reference electrode), 0.1M tetrabutylammonium hexafluorophosphate (supporting electrolyte)).

9.TGA/DSC graphs

Fig. S21. TGA/DSC graph of PhMeO

Fig. S22. TGA/DSC graph of TolPz

Tm

т

150

Temperature (°C)

200

250

300

100

(b)

Fig. S23. TGA/DSC graph of PhPz

Fig. S24. TGA/DSC graph of TolMePz

Fig. S25. TGA/DSC graph of PhMePz

10. Single crystal analysis

Single-crystal X-ray diffraction data of compounds **PhPz**, **TolPz**, and **PhMePz** were collected on an Agilent Supernova X-ray diffractometer equipped with a CCD detector at room temperature (150 or 296 K) using the source graphite-monochromatic Cu Ka radiation ($\lambda = 1.54184$ Å). For single crystal analysis, the same methods and software were used as mentioned in the previous report.⁶⁻¹⁰ Compounds **PhPz** and **TolPz** contain disordered DMSO molecules which we have modelled reliably using PART instruction. In **PhPz** the S-atom of the DMSO was disordered with 0.91 in PART 1 and 0.09 in PART 2 whereas in **TolPz** the S and O-atoms of DMSO was disordered with 0.63 in PART 1 and 0.37 in PART 2. Compound **TolPz** contains a disordered DMSO molecules which could be modelled reliably. Crystallographic data is summarized in **Table S10**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Identification code	PhPz	TolPz	PhMePz
Empirical formula	$C_{31}H_{26}N_2OS_2$	$C_{33}H_{30}N_2OS_2$	C ₃₀ H ₂₂ N ₂ S
Formula weight	506.66	534.75	442.58
Temperature/K	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Monoclinic	triclinic
Space group	P2 ₁ /c	P21/n	P-1
a/Å	16.2678(6)	5.8344(2)	7.5356(8)
b/Å	21.7983(8)	18.1183(6)	9.0697(7)
c/Å	7.4971(3)	26.5642(7)	16.4415(12)
α/°	90.00	90.00	85.207(6)
β/°	100.634(4)	94.910(2)	84.755(7)
$\gamma/^{\circ}$	90.00	90.00	84.765(7)
Volume/Å ³	2612.89(17)	2797.78(15)	1111.12(17)
Ζ	4	4	2

Table S10. Crystal data and structure refinement for PhPz, TolPz, and PhMePz

$\rho_{calc}g/cm^3$	1.288	1.270	1.323
μ/mm^{-1}	2.051	1.941	1.445
F(000)	1069	1133	465
Radiation	CuKα (λ = 1.54184)	$CuK\alpha (\lambda = 1.54184)$	CuKα (λ = 1.54184)
Index ranges	$-19 \le h \le 18$ $0 \le k \le 25$ $0 \le 1 \le 8$	$-6 \le h \le 4$ $-21 \le k \le 19$ $-28 \le 1 \le 31$	$-8 \le h \le 8$ $-10 \le k \le 9$ $-19 \le l \le 19$
Reflections collected	8632	8917	6325
Data/restraints/parameters	4596/49/356	4888/60/390	3877/42/300
Goodness-of-fit on F ²	1.047	1.056	1.003
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0486, wR_2 = 0.1296$	$R_1 = 0.0455, wR_2 = 0.1211$	$R_1 = 0.0430,$ $wR_2 = 0.1028$
Final R indexes [all data]	$R_1 = 0.0613, wR_2 = 0.1435$	$\begin{array}{c} R_1 = 0.0591, \ wR_2 = \\ 0.1322 \end{array}$	$R_1 = 0.0710,$ $wR_2 = 0.1314$
CCDC No.	2248255	2248257	2248258

A

В

С

D

Fig. S26: (A) Cyclic hydrogen-bonded network between **PhPz** and DMSO molecules. ORTEP drawings of **PhPz** (B), **TolPz** (C) and **PhMePZ** (D) with ellipsoid contour probability level of 50%.

11.Hole-only device fabrication

The HODs were consisted of ~125 nm indium tin oxide (ITO) as anode layer, ~40 nm poly(3,4ethylenedioxythiophene): polystyrene sulphonate (PEDOT:PSS) as hole injection layer (HIL), ~10 nm hole transport layer (HTL), ~1 nm lithium fluoride (LiF) as electron injection layer (EIL), and ~100 nm aluminum (Al) as cathode layer.

Before fabricating the device, the ITO-coated glass substrate was first cleaned in acetone at 45° C for 30 mins and then in 2-propanol at 60°C for 60 mins (both under an ultrasonic bath), followed by treating them in an ozone atmosphere under ultraviolet light for 15 min. After cleaning, the substrate was transferred into a nitrogen-filled glove box to coat the HIL and HTL via spin-coating. The HIL was spin-coated at 4,000 rpm for 20 seconds, then heated at 120 °C for 10 min, and then cooled down for 10 minutes. After dissolving the compounds in toluene, they were spin-coated onto the specimen at 2,500 rpm for 20 seconds for coating the HTL and then heated at 120 °C for 10 min, and then cooled down for 10 minutes. After coating the HTL, the coated substrate was transferred into a high-vacuum chamber with a base pressure of ~1 × 10⁻⁷ torr. The EIL and cathode were sequentially deposited via thermal evaporation. The current density of the fabricated device was measured using a Keithley 2400 electrometer.

12.References

- (1) F. Liu, J. Du, D. Song, M. Xu, G. Suna, Sensitive Fluorescent Sensor for the Detection of Endogenous Hydroxyl Radicals in Living Cells and Bacteria and Direct Imaging with Respect to Its Ecotoxicity in Living Zebra Fish. *Chem. Commun.* 2016, **52**, 4636–4639.
- (2) J. Liaw, K.-L. Wang, S.-P. Pujari, Y.-C. Huang, B.-C. Tao, M.-H. Chen, K.-R. Lee, J.-Y. Lai. A Novel, Conjugated Polymer Containing Fluorene, Pyridine and Unsymmetric Carbazole Moieties: Synthesis, Protonation and Electrochemical Properties. *Dye. Pigment.* 2009, **82**, 109–117.
- (3) M. Li, T. Wang, C. Wang. Multicomponent Reaction of Pyridinium Salts, β-Nitrostyrenes and Ammonium Acetate under the DBU/Acetic Acid System: Access to 2,4,6-Triarylpyridine Derivatives. *Chem. Select.* 2020, **5**, 3600–3604.
- (4) J.-V. Allan, G. Reynolds. Synthesis of some phenothiazinyl and carbazolyl pyrylium salts. *J. Hetro. Chem.* 1976, **13**, 73-76.
- (5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O[°]. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- (6) A. Karmakar, M. M.-A. Soliman, G. M.-D. M. Rúbio, M. F.C. G. da Silva, A. J. L. Pombeiro. Synthesis and catalytic activities of a Zn(II) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. *Dalton Trans.*, 2020, **49**, 8075–8085.
- (7) Crys AlisPro Program, ver. 171.37.33c. Data Collection and Processing Software for Agilent X-ray Diffractometers; Agilent Technologies: Oxford, UK, 2012, 1–49
- (8) G. M. Sheldrick. SADABS. Program for Empirical Absorption Correction. University of Gottingen, Germany, 1996.
- (9) G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.
- (10) L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854.