ELECTRONIC SUPPLEMENTARY INFORMATION

Host-guest cooperative bridged bicylopolyynic (BBP) open-molecular cages with optical–switching properties

Akanksha Ashok Sangolkar, Rama Krishna Kadiyam, and Ravinder Pawar*

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.

ravinder_pawar@nitw.ac.in

	CONTENTS
S1	Optimized geometries and important geometrical parameters of the BBP cages in its electronic ground state
S2	Frontiers molecular orbitals analysis, dipole moment, point group for the neutral and charged BBP cages
S 3	MESP and NPA charges on BTH cage
S4	Photophysical properties of neutral and charged BBP cages
S 5	Optimized geometries of the complexes of BTH cage with guest (Li ⁺ , Li, Ne, Ar) atom/ion
S6	Frontiers molecular orbitals, energy gap, dipole moment, point group of the studied complexes
S7	MESP and NPA Charges on complexes
S8	IRC of the TS of the complex of Li with BTH cage
S9	Energy decomposition analysis (EDA)
S10	Photophysical properties of the complexes
S11	AIMD Simulations
S12	Cartesian coordinates

S1. Optimized geometries and important geometrical parameters of the BBP cages in its electronic ground state

Figure S1. Side and top view of the optimized geometries of BTH cage in electronic ground state.

Table S1. Important geometrical parameters and deformation parameter (DP) in the optimized geometries of neutral and charged BTH cages.

	a 3	102.648		a 6	14	49.851				
	Geometrical Parameters of Cationic BTH (C14H2) cage									
					A	Arm1	Arm	2 = Arm3		
			DP			DP		DP		
Distance	d 1	1.963	0.005	X 1	1.492	-0.007	1.492	-0.007		
	d 2	1.901	-0.057	X 2	1.207	0.000	1.221	0.014		
	d3	1.901	-0.057	X 3	1.384	-0.002	1.357	-0.029		
	d 4	4.861	0.090							
Angle	a 1	103.599	0.951	a 4	118.427	2.779	117.067	1.419		
	a 2	103.599	0.951	a 5	145.178	-0.620	148.295	2.497		
	a 3	93.334	-9.314	a 6	151.739	1.888	149.636	-0.215		

		Geometrical Parameters of Anionic BTH (C14H2) cage								
			Arm1 Arm2 = Arm3							
			DP			DP		DP		
Distance	d 1	1.777	-0.181	X 1	1.555	0.056	1.496	-0.003		
	d ₂	1.927	-0.031	X 2	1.254	0.047	1.212	0.005		
	d3	1.927	-0.031	X 3	1.335	-0.051	1.381	-0.005		
	d 4	4.816	0.045							
Angle	a 1	106.126	3.478	a 4	112.715	-2.933	114.545	-1.103		
	a 2	106.126	3.478	a 5	123.551	-22.247	145.142	-0.656		
	a 3	101.747	-0.901	a 6	166.110	16.259	150.861	1.010		
* All the d	listan	ces are given	in Å and a	ngles	are in ° (de	gree)				

Table S2. Important geometrical parameters and deformation parameter (DP) in the optimized geometries of neutral and charged BIN cages.

Geon	Geometrical Parameters of Neutral BIN (C20H2) cage							
				Arm1 = Arm2 =				
				Arm3				
Distance	d 1	2.620	X 1	1.486				
	\mathbf{d}_2	2.620	X 2	1.206				
	d 3	2.620	X 3	1.372				
	d 4	6.847	X 4	1.211				
Angle	a 1	104.083	a 4	114.435				
	\mathbf{a}_2	104.083	a 5	154.481				
	a 3	104.083	a 6	160.948				
			a 7	159.006				

	Geometrical Parameters of Cationic BIN (C20H2) cage								
					Ar	m1	Arm2 =	Arm3	
			DP			DP		DP	
Distance	\mathbf{d}_1	2.624	0.004	X 1	1.481	-0.005	1.481	-0.005	
	d ₂	2.519	-0.101	X 2	1.206	0.000	1.216	0.010	
	d 3	2.519	-0.101	X 3	1.371	-0.001	1.348	-0.024	
	d 4	6.957	0.110	X 4	1.210	-0.001	1.223	0.012	
Angle	a 1	105.047	0.964	a 4	116.737	2.302	115.705	1.270	
	a 2	105.047	0.964	a 5	153.070	-1.411	155.633	1.152	
	a 3	96.040	-8.043	a 6	162.670	1.722	161.027	0.079	
				a 7	159.638	0.632	159.791	0.785	

	Geometrical Parameters of Anionic BIN (C20H2) cage									
		Arm1 Arm2 = Arm3								
			DP			DP		DP		
Distance	\mathbf{d}_1	2.232	-0.388	X1	1.533	0.047	1.481	-0.005		
	\mathbf{d}_2	2.543	-0.077	X2	1.25	0.044	1.209	0.003		
	d3	2.543	-0.077	X 3	1.328	-0.044	1.37	-0.002		
	d 4	7.015	0.168	X 4	1.246	0.035	1.213	0.002		
Angle	a 1	106.605	2.522	a 4	113.053	-1.382	113.51	-0.925		
	a ₂	106.605	2.522	a 5	126.886	-27.595	155.928	1.447		
	a3	102.725	-1.358	a 6	173.058	12.110	160.694	-0.254		
				a 7	166.188	7.182	160.264	1.258		
* All the di	istance	s are given	in Å and	angle	s are in ° (de	egree)				

S2. Frontiers molecular orbitals analysis, dipole moment, point group for the neutral and charged BBP cages

Table S3.	The calculated	dipole moment	, point group	, and energy	gap va	lues betv	veen the
HOMO and	d LUMO in neu	tral and charged	BBP cages.				

Systems	Dipole Moment	Point	Energy gap (eV)	
	(Debye)	Group	α spin state	β spin state
C ₁₄ (Neutral)	0.000	D_{3h}	6.03	
C ₁₄ (Cation)	1.538	C_{2v}	5.90	3.33
C ₁₄ (Anion)	3.107	C_{2v}	3.98	5.00
C ₂₀ (Neutral)	0.000	D_{3h}	5.94	
C ₂₀ (Cation)	2.185	C_{2v}	5.44	2.59
C ₂₀ (Anion)	3.843	C_{2v}	3.46	4.88

Figure S2. HOMO and LUMO of the neutral and charged BTH and BIN cages

S3. MESP and NPA charges on BTH cage

Figure S3. MESP and NPA charges on neutral and charged BTH cage. (a) Side view of the electrostatic potential, (b) Top view of the electrostatic potential, and (c) Atomic charges.

S4. Photophysical properties of neutral and charged BBP cages

Table S4. Oscillatory strength, excitation wavelength and absorption	on coefficient for the
most important optical excitations in the neutral and charged BBP	cages.

System	Oscillatory	Excitation Wavelength	Absorption coefficient
System	strength (f)	(λ) in nm	(ε) in Lmol ⁻¹ cm ⁻¹
Neutral BTH	0.027	315.51	939.11
	0.053	251.69	1796.40
Anionic BTH	0.012	733.29	972.01
	0.013	700.44	997.28
	0.078	386.22	3077.34
Cationic BTH	0.022	676.18	1399.84
	0.060	522.16	2342.62
	0.015	385.97	650.20
Neutral BIN	0.018	339.28	600.06
	0.042	256.52	1407.37
Anionic BIN	0.013	717.54	833.25
	0.063	505.69	4532.03
	0.016	454.56	4620.76
	0.075	454.17	4620.76
Cationic BIN	0.044	1010.24	2617.74
	0.051	790.53	2865.76
	0.021	560.62	1636.03
	0.018	526.49	1441.98

S5. Optimized geometries of the complexes of BTH cage with guest (Li⁺, Li, Ne, Ar) atom/ion.

Figure S4. Side and top view of the optimized geometries the complexes of BTH cage with guest (Li+, Li, Ne, Ar) atom/ion in their electronic ground state.

Figure S5. Side and top view of the optimized geometries the complexes of BIN cage with guest (Li, Na, and Ar) atom/ion in their electronic ground state.

Table S5.	. Geometrical]	parameters and	deformation]	parameter (DP)	in the compl	exes of
BTH cag	e.					

	Endohedral complex of Li with BTH (Li@BTH)							
					Ar	m1	Arm2 = A	rm3
			DP			DP		DP
C – C								
Distance	d1	1.912	-0.046	X1	1.560	0.061	1.506	0.007
	d2	1.983	0.025	X2	1.249	0.042	1.216	0.009
	d3	1.983	0.025	X3	1.349	-0.037	1.391	0.005
	d4	4.786	0.015					
Angle	a1	105.650	3.002	a4	113.141	-2.507	114.840	-0.808
	a2	105.650	3.002	a5	130.537	-15.261	147.973	2.175

	TS complex of Li with BTH (Li ^{TS} @BTH)									
					Ar	m1	Arm2			
			DP			DP		DP		
C – C										
Distance	d1	1.954	-0.004	X1	1.568	0.069	1.491	-0.008		
	d2	2.054	0.096	X2	1.253	0.046	1.213	0.006		
	d3	1.936	-0.022	X3	1.357	-0.029	1.376	-0.010		
	d4	4.749	-0.022							
Angle	a1	107.085	4.437	a4	112.167	-3.481	116.007	0.359		
	a2	106.265	3.617	a5	132.139	-13.659	143.138	-2.660		
	a3	100.595	-2.053	a6	154.956	5.105	145.092	-4.759		
Li – C Distan	ces: Li –	C (Arm1) =	1.985; Li	– C (.	Arm2=Arm	n3) = 1.930 ;	; $Li - CH = 2.46$	59 ; Li –		
	Center = 0.660									

a3 101.532 -1.116 **a6** 159.925 10.074 148.060 -1.791 **Li – C Distances:** Li – C (Arm1) = 2.028, Li – C (Arm2=Arm3) = 2.101 ; Li – CH = 2.393

	Exohedral complex of Li with BTH (LiBTH)										
					Ar	m1	Arm2				
			DP			DP		DP			
C – C											
Distance	d1	1.809	-0.149	X1	1.559	0.060	1.495	-0.004			
	d2	1.922	-0.036	X2	1.259	0.052	1.213	0.006			
	d3	1.984	0.026	X3	1.336	-0.050	1.393	0.007			
	d4	4.800	0.029								
Angle	a1	103.084	0.436	a4	112.794	-2.854	114.653	-0.995			
	a2	107.388	4.740	a5	125.075	-20.723	149.723	3.925			
	a3	101.560	-1.088	a6	160.430	10.579	147.402	-2.449			
Li – C Dist	Li – C Distances: $\text{Li} - \text{C} (\text{Arm1}) = 2.093 \text{ and } \text{Li} - \text{C} (\text{Arm2}) = 2.256 \text{ ; } \text{Li} - \text{CH} = 3.149 \text{ ; } L$										
Centre = 2.038											

Endohedral complex of Li ⁺ with BTH (Li ⁺ @BTH)								
		Arm1 = Arm2 =						
					Arr	n3		
			DP			DP		
C – C								
Distance	d1	2.006	0.048	X1	1.513	0.014		
	d2	2.006	0.048	X2	1.211	0.004		
	d3	2.006	0.048	X3	1.399	0.013		
	d4	4.775	0.004					
Angle	a1	102.224	-0.424	a4	116.000	0.352		
	a2	102.224	-0.424	a5	148.231	2.433		
	a3	102.224	-0.424	a6	147.769	-2.082		
Li + – C Distances: Li+ – C = 2.124 : Li+ – CH = 2.387								

	TS complex of Li ⁺ with BTH (Li ^{+TS} @BTH)										
			Arm1 Arm2 = A								
			DP			DP		DP			
Distance	d1	1.959	0.001	X1	1.498	-0.001	1.522	0.023			
	d2	2.059	0.101	X2	1.207	0.000	1.214	0.007			

	d3	2.059	0.101	X3	1.386	0.000	1.410	0.024
	d4	4.737	-0.034					
Angle	a1	101.57	-1.078	a4	117.043	1.395	114.908	-0.740
	a2	101.57	-1.078	a5	144.533	-1.265	150.425	4.627
	a3	104.935	2.287	a6	150.240	0.389	145.176	-4.675
Li + – C Distances: Li + – C = 1.986; Li + – CH = 2.490; Li + – centre = 0.766								

	Exohedral complex of Li ⁺ with BTH (Li ⁺ BTH)									
					Arı	m1	Arm2 = A	rm3		
			DP			DP		DP		
Distance	d1	1.938	-0.020	X1	1.494	-0.005	1.500	0.001		
	d2	1.994	0.036	X2	1.206	-0.001	1.210	0.003		
	d3	1.994	0.036	X3	1.384	-0.002	1.394	0.008		
	d4	4.777	0.006							
Angle	a1	102.264	-0.384	a4	116.972	1.324	115.730	0.082		
	a2	102.264	-0.384	a5	144.870	-0.928	148.662	2.864		
	a3	101.608	-1.040	a6	150.691	0.840	147.603	-2.248		
Li + -C Distances: $Li + -C = 2.244$; $Li + -CH = 3.227$; $Li1 - centre = 2.170$										

Endohedral complex of Ne with BTH (Ne@BTH)									
					Arm1 = .	Arm2 =			
	Arm3								
			DP			DP			
Distance	d 1	2.126	0.168	X1	1.542	0.043			
	d2	2.126	0.168	X2	1.218	0.011			
	d3	2.126	0.168	X3	1.419	0.033			
	d4	4.600	-0.171						
Angle	a1	105.947	3.299	a4	112.800	-2.848			
	a2	105.947	3.299	a5	148.139	2.341			
	a3	105.947	3.299	a6	144.661	-5.190			
Ne – C Distances: Ne – C = 2.241 ; Ne – CH = 2.300									

TS complex of Ne with BTH (Ne ^{TS} @BTH)										
					Arı	m1	Arm2 = A	.rm3		
			DP			DP		DP		
Distance	d1	2.029	0.071	X1	1.498	-0.001	1.569	0.07		
	d2	2.173	0.215	X2	1.208	0.001	1.222	0.015		
	d3	2.173	0.215	X3	1.387	0.001	1.435	0.049		
	d4	4.597	-0.174							
Angle	a1	100.925	-1.723	a4	114.919	-0.729	111.761	-3.887		
	a2	100.925	-1.723	a5	145.681	-0.117	148.337	2.539		
	a3	115.75	13.102	a6	147.403	-2.448	143.329	-6.522		
Ne – C Distances: Ne – C (Arm2=Arm3) = 2.168; Ne – CH = 2.366; Ne – centre = 0.564										

Exohedral complex of Ne with BTH (NeBTH)									
					Ar	m1	$\mathbf{Arm2} = \mathbf{A}$	Arm3	
			DP			DP		DP	
Distance	d1	1.958	0.000	X1	1.500	0.001	1.500	0.001	

	d2	1.958	0.000	X2	1.207	0.000	1.207	0.000
	d3	1.958	0.000	X3	1.386	0.000	1.386	0.000
	d4	4.771	0.000					
Angle	a1	102.651	0.003	a4	115.642	-0.006	115.644	-0.004
	a2	102.651	0.003	a5	145.836	0.038	145.779	-0.019
	a3	102.662	0.014	a6	149.819	-0.032	149.858	0.007
Ne – C Distances: $Ne – C = 3.246$: $Ne – CH = 4.366$; $Ne – Centre = 3.657$								

	Exohedral complex of Ar with BTH (ArBTH)									
					Arm1		Arm2 = Arm3			
			DP			DP		DP		
Distance	d1	1.958	0.000	X1	1.499	0.000	1.499	0.000		
	d2	1.958	0.000	X2	1.207	0.000	1.207	0.000		
	d3	1.958	0.000	X3	1.386	0.000	1.386	0.000		
	d4	4.771	0.000							
Angle	a1	102.645	-0.003	a4	115.651	0.003	115.500	-0.148		
	a2	102.645	-0.003	a5	145.796	-0.002	145.805	0.007		
	a3	102.649	0.001	a6	149.853	0.002	149.845	-0.006		
Ar – C Distances: Ar – C Arm = 3.503 ; Ar – CH = 4.625 ; Ar – Centre = 3.962										
* All the distances are given in Ang and angle are in ° (degree)										

Endohedral complex of Li with BIN (Li@BIN)										
					Arı	n1	Arm2 =	Arm3		
			DP			DP		DP		
Distance	d1	2.134	-0.486	X1	1.521	0.035	1.483	-0.003		
	d2	2.456	-0.164	X2	1.241	0.035	1.210	0.004		
	d3	2.456	-0.164	X3	1.336	-0.036	1.369	-0.003		
	d4	7.155	0.308	X4	1.247	0.036	1.216	0.005		
Angle	a1	104.894	0.811	a4	114.445	0.010	114.876	0.441		
	a2	104.894	0.811	a5	131.474	-23.007	153.778	-0.703		
	a3	101.394	-2.689	a6	171.214	10.266	160.029	-0.919		
				a7	166.700	7.694	163.562	4.556		
Li–C Distances: Li–C (Arm1) = 2.134 ; Li–C (Arm2) = 2.456 ; Li–CH = 3.578										

Table S6. Geometrical parameters and deformation parameter (DP) in the complexes of BIN cage.

					Arm2 =	Arm3	Arm2	Arm2 = Arm3		
			DP			DP		DP		
Distance	d1	2.508	-0.112	X1	1.488	0.002	X1'	1.486	0.000	
	d2	2.508	-0.112	X2	1.207	0.001	X2'	1.205	-0.001	
	d3	2.508	-0.112	X3	1.373	0.001	X3'	1.371	-0.001	
	d4	7.007	0.160	X4	1.213	0.002				
Angle	a1	102.665	-1.418	a4	115.635	1.200	a4'	115.656	1.221	
	a2	102.665	-1.418	a5	153.664	-0.817	a5'	154.045	-0.436	
	a3	102.665	-1.418	a6	160.424	-0.524	a6'	158.942	-2.006	
				a7	160.451	1.445	a7'	163.765	4.759	

]	Endohedral complex of Na with BIN (Na@BIN)										
		Arm1 Arm2 = Arm3										
			DP			DP		DP				
Distance	d1	2.451	-0.169	X1	1.523	0.037	1.481	-0.005				

	d2	2.591	-0.029	X2	1.244	0.038	1.210	0.004	
	d3	2.591	-0.029	X3	1.333	-0.039	1.372	0.000	
	d 4	6.930	0.083	X4	1.248	0.037	1.216	0.005	
Angle	a1	106.104	2.021	a4	113.794	-0.641	113.709	-0.726	
	a2	106.104	2.021	a5	131.941	-22.540	158.867	4.386	
	a3	102.416	-1.667	a6	172.548	11.600	158.406	-2.542	
				a7	162.409	3.403	158.777	-0.229	
Na-C Distances: Na-C (Arm1) = 2.529 ; Na-C (Arm2) = 2.661 ; Na-CH = 3.466									

	Endohedral c	omplex of N	a ⁺ with Bl	IN (Na	+@ BIN)			
			DP		Arm1 = Arm2 = Arm3			
Distance	d1	2.658	0.038	X1	1.487	0.001		
	d2	2.658	0.038	X2	1.206	0.000		
	d3	2.658	0.038	X3	1.375	0.003		
	d4	6.819	-0.028	X4	1.213	0.002		
Angle	a1	103.578	-0.505	a4	114.866	0.431		
	a2	103.578	-0.505	a5	156.691	2.210		
	a3	103.578	-0.505	a6	159.720	-1.228		
				a7	158.456	-0.550		
	Na+–C Distance	es: Na1 – C	= 2.727 ; N	Va1 – C	CH = 3.409			

Endohedral complex of K with BIN (K@BIN)											
					Ar	Arm3					
			DP			DP		DP			
C – C Distance	d1	2.698	0.078	X1	1.522	0.036	1.485	-0.001	1.486		
	d2	2.760	0.140	X2	1.242	0.036	1.212	0.006	1.212		
	d3	2.762	0.142	X3	1.339	-0.033	1.376	0.004	1.376		
	d4	6.678	-0.169	X4	1.249	0.038	1.217	0.006	1.217		
Angle	a1	107.281	3.198	a4	112.810	-1.625	112.405	-2.030	112.375		
	a2	107.189	3.106	a5	137.502	-16.979	161.904	7.423	162.036		

a3 104.234 11.716 157.853 -3.095 157.824 0.151 a6 172.664 a7 156.145 -2.861 155.655 -3.351 155.626 **K–C Distances:** K–C (Arm1) = 2.769; K–C (Arm2) = 2.829; K–C (Arm3) = 2.826; K–CH = 3.339

TS complex of K with BIN (K^{TS}@BIN) Arm2 Arm1 Arm3 DP DP DP **C** – **C** Distance **X1** d1 2.717 0.097 1.521 0.035 1.494 0.008 1.481 d2 2.930 0.310 **X2** 1.246 0.040 1.212 0.006 1.210 2.489 -0.131 1.383 d3 **X3** 1.343 -0.029 0.011 1.364 d4 6.637 -0.210 X4 1.250 0.039 1.217 0.006 1.215 Angle a1 106.897 2.814 111.991 -2.444 111.616 -2.819 114.260 a4 109.176 163.247 a2 5.093 a5 139.399 -15.082 8.766 151.733 a3 102.345 -1.738 a6 163.581 2.633 156.959 -3.989 160.488 a7 154.790 -4.216 154.603 -4.403 158.371 **K–C Distances:** K–C (Arm1) = 2.681; K–C (Arm2) = 2.749; K–C (Arm3) = 3.642; K–CH = 3.443; K–Centre = 1.103

		Exol	nedral con	nplex o	of K with BI	N (KBIN)					
					Ar	Arm1 Arm2					
			DP			DP		DP			
C – C Distance	d1	2.429	-0.191	X1	1.526	0.040	1.481	-0.005	1.480		
	d2	2.477	-0.143	X2	1.249	0.043	1.209	0.003	1.208		
	d3	2.718	0.098	X3	1.330	-0.042	1.373	0.001	1.368		
	d4	6.885	0.038	X4	1.249	0.038	1.214	0.003	1.212		
Angle	a1	107.652	3.569	a4	112.925	-1.510	112.928	-1.507	114.461		
	a2	105.450	1.367	a5	130.901	-23.580	160.612	6.131	153.561		
	a3	102.526	-1.557	a6	169.531	8.583	158.610	-2.338	161.460		
				a7	160.472	1.466	157.966	-1.040	159.476		
K-C Distances: K-C	K–C Distances: K–C (Arm1) = 2.741; K0 – C (Arm2) = 2.874; K–C (Arm3) = 5.066; K–CH = 4.249; K–Centre = 2.598										

Endohedral complex of Ne with BIN (Ne@BIN)

					Arm1=Ar	m2 = Arm3
			DP			DP
C – C Distance	d1	2.739	0.119	X1	1.486	0.000
	d2	2.739	0.119	X2	1.206	0.000
	d3	2.739	0.119	X3	1.374	0.002
	d4	6.675	-0.172	x4	1.211	0.000
Angle	a1	104.914	0.831	a4	113.715	-0.720
	a2	104.914	0.831	a5	157.211	2.730
	a3	104.914	0.831	a6	160.024	-0.924
				a7	156.479	-2.527
N. (7 Distance	an Na C	2 005. No	CII	2 2 2 0	

Ne–C Distances: Ne - C = 2.805; Ne - CH = 3.338

					Arı	n1	Arm2 = Arm3		
			DP			DP		DP	
Distance	d1	2.721	0.101	X1	1.486	0.000	1.488	0.002	
	d2	2.798	0.178	X2	1.205	-0.001	1.207	0.001	
	d3	2.798	0.178	X3	1.371	-0.001	1.371	-0.001	
	d4	6.620	-0.227	X4	1.210	-0.001	1.212	0.001	
Angle	a1	103.863	-0.220	a4	114.021	-0.414	113.269	-1.166	
	a2	103.863	-0.220	a5	154.349	-0.132	159.107	4.626	
	a3	107.668	3.585	a6	159.983	-0.965	159.797	-1.151	
				a7	157.440	-1.566	154.717	-4.289	
	Ne-C	Distances:	Ne - C = 2	.629;	Ne - CH = 3.	501 ; Ne – C	Centre $= 1.143$		

		Exol	nedral com	plex of	Ne with BI	N (NeBIN)			
					Arm2 =	= Arm3	Arm2	= Arm3	
			DP			DP		DP	
Distance	d1	2.508	-0.112	X1	1.488	0.002	X1'	1.486	0.000
	d2	2.508	-0.112	X2	1.207	0.001	X2'	1.205	-0.001
	d3	2.508	-0.112	X3	1.373	0.001	X3'	1.371	-0.001
	d4	7.007	0.160	X4	1.213	0.002			

Angle	a1	102.665	-1.418	a4	115.635	1.200	a4'	115.656	1.221	
	a2	102.665	-1.418	a5	153.664	-0.817	a5'	154.045	-0.436	
	a3	102.665	-1.418	a6	160.424	-0.524	a6'	158.942	-2.006	
				a7	160.451	1.445	a7'	163.765	4.759	
Ne–C Distances: Ne – C = 3.292 ; Ne – CH = 4.365 ; Ne – CH = 5.753 ; Ne – Center = 3.790										

Enc	dohedral o	complex of A	Ar with Bl	IN (Ar	@BIN)											
					Arm1=Arm	m2 = Arm3										
			DP			DP										
C – C Distance	d1	2.870	0.250	X1	1.493	0.007										
	d2	2.870	0.250	X2	1.208	0.002										
	d3	2.870	0.250	X3	1.381	0.009										
	d4	6.465	-0.382	x4	1.214	0.003										
Angle	a1	106.462	2.379	a4	112.335	-2.100										
	a2	106.462	2.379	a5	160.140	5.659										
	a3	106.462	2.379	a6	157.649	-3.299										
				a7	154.546	-4.460										
Ar–	C Distanc	es: Ar – CH	= 3.232 ;	Ar – C	2 = 2.933	Ar–C Distances: $Ar – CH = 3.232$; $Ar – C = 2.933$										

		TS com	plex of Ar	with H	BIN (Ar ^{ts} @I	BIN)		
					Ari	Arm2 =	= Arm3	
			DP			DP		DP
Distance	d1	2.793	0.173	X1	1.485	-0.001	1.500	0.014
	d2	2.904	0.284	X2	1.205	-0.001	1.210	0.004
	d3	2.904	0.284	X3	1.371	-0.001	1.386	0.014
	d4	6.452	-0.395	x4	1.210	-0.001	1.216	0.005
Angle	a1	103.254	-0.829	a4	113.539	-0.896	111.834	-2.601
	a2	103.254	-0.829	a5	154.470	-0.011	160.812	6.331
	a3	112.564	8.481	a6	159.258	-1.690	156.706	-4.242
				a7	156.234	-2.772	153.535	-5.471

	Exohedral complex of Ar with BIN (ArBIN)								
					Arm2 =	= Arm3	Arm2	= Arm3	
			DP			DP		DP	
Distance	d1	2.621	0.001	X1	1.486	0.000	X1'	1.486	0.000
	d2	2.622	0.002	X2	1.206	0.000	X2'	1.206	0.000
	d3	2.622	0.002	X3	1.371	-0.001	X3'	1.371	-0.001
	d4	6.844	-0.003	X4	1.211	0.000			
Angle	a1	104.072	-0.011	a4	114.424	-0.011	a4'	114.417	-0.018
	a2	104.072	-0.011	a5	154.521	0.040	a5'	154.534	0.053
	a3	104.132	0.049	a6	160.984	0.036	a6'	160.954	0.006
				a7	158.882	-0.124	a7'	158.997	-0.009
	Ar–C Distanc	tes: $Ar - C =$	= 3.513; Ar	- CH =	= 4.618; Ar -	-CH = 5.940	; Ar – Centr	e = 4.073	
* All the dist	ances are given ir	n Ang and an	gle are in ^o	° (degre	ee)				

Ar–C Distances: Ar - CH = 3.339; Ar - C(Arm1) = 3.704; Ar - C(Arm2) = 2.813; Ar - Centre = 0.862

S6. Frontiers molecular orbitals, energy gap, dipole moment, point group of the studied complexes

Systems	Dipole Moment	Point	Energy gap (eV)	
	(Debye)	Group	α-spin state	β-spin state
Li@BTH	2.799	C_{2v}	3.74	5.44
LiBTH	3.763	C_s	4.37	5.24
Li+@BTH	0.000	D_{3h}	6.32	
Li ⁺ BTH	5.270	C_{2v}	6.14	
Ne@BTH	0.000	D_{3h}	6.34	
NeBTH	0.028	C_{2v}	6.03	
ArBTH	0.019	C_{2v}	6.03	
Li@BIN	3.070	C_{2v}	3.39	4.91
Li+@BIN	0.543	C_{3v}	5.83	
Na@BIN	3.940	C_{2v}	3.28	5.11
Na ⁺ @BIN	0.000	D_{3h}	6.08	
K@BIN	4.128	C_s	3.05	5.33
KBIN	6.483	C_1	3.51	5.07
Ne@BIN	0.000	D_{3h}	6.10	
NeBIN	0.024	C_s	5.94	
Ar@BIN	0.000	D_{3h}	6.30	
ArBIN	0.024	C_s	5.94	

Table S7. The calculated dipole moment, point group, and energy gap values between the HOMO and LUMO in various complexes of BTH and BIN cages.

Figure S6. Frontier's molecular orbitals of the complexes of BTH cage

Figure S7. Frontier's molecular orbitals of the complexes of BIN cage

S7. MESP and NPA Charges on complexes

Ar...BTH Figure S8. Molecular electrostatic potential and atomic charges on the BTH complexes.

Figure S9. Molecular electrostatic potential and atomic charges on the BIN complexes.

S8. IRC for the TS of the complex of Li with BTH cage

Figure S10. Intrinsic reaction coordinate (IRC) obtained from the TS of the complex of Li with the BTH cage.

S9. Energy decomposition analysis (EDA)

Figure S11. *IE* and its various components. (a) Endohedral, exohedral, and interlinking TS complexes of Li with BTH in non-charge separated and charge separated state. (b) Endohedral, exohedral, and interlinking TS complexes of Li^+ with BTH in non-charge separated and charge separated state.

Guest	Configuration	Pauli	Electrostatic	Steric	Dispersion	Orbital	IE
atom/ion	-				_		
			BTH complexe	s			
Li (Non-CS)	Endo	15.88	-9.52	6.36	0.04	-8.41	-2.02
	Exo	7.62	-5.13	2.49	-0.03	-5.19	-2.73
	TS	14.71	-8.93	5.78	0.02	-7.70	-1.90
Li (CS)	Endo	1.67	-4.34	-2.68	0.04	-2.89	-5.53
	Exo	0.76	-4.68	-3.92	-0.03	-2.02	-5.96
	TS	1.92	-4.50	-2.59	0.02	-2.85	-5.42
Li ⁺	Endo	1.46	0.26	1.72	0.04	-2.76	-1.00
	Exo	0.52	-0.30	0.23	-0.03	-1.73	-1.53
	TS	1.80	0.03	1.84	0.02	-2.72	-0.87
Ne	Endo	6.79	-2.42	4.37	-0.08	-0.52	3.77
	Exo	0.06	-0.03	0.03	-0.05	-0.01	-0.02
	TS	6.48	-2.33	4.16	-0.11	-0.49	3.56
Ar	Exo	0.14	-0.06	0.08	-0.12	-0.02	-0.05
			BIN complexes	5			

Table S8. IE values and its various energy components for the studied complexes

Li (Non-CS)	Endo	8.61	-5.57	3.04	-0.07	-5.64	-2.67
Li (CS)	Endo	0.48	-4.25	-3.77	-0.07	-2.07	-5.90
Li ⁺	Endo	0.25	-0.22	0.03	-0.07	-1.78	-1.82
Na (Non-CS)	Endo	8.14	-5.33	2.81	-0.10	-4.73	-2.02
Na (CS)	Endo	0.76	-4.29	-3.53	-0.10	-1.50	-5.13
Na^+	Endo	0.49	-0.33	0.16	-0.10	-1.37	-1.31
K (Non-CS)	Endo	10.43	-6.83	3.60	-0.08	-5.24	-1.72
	Exo	4.82	-3.36	1.45	-0.18	-3.57	-2.29
	TS	9.16	-6.05	3.11	-0.18	-4.76	-1.83
K (CS)	Endo	2.19	-4.64	-2.44	-0.08	-1.58	-4.10
	Exo	0.88	-4.03	-3.15	-0.18	-1.04	-4.37
	TS	2.12	-4.63	-2.51	-0.18	-1.48	-4.16
Ne	Endo	0.66	-0.27	0.39	-0.23	-0.04	0.13
	Exo	0.05	-0.02	0.03	-0.05	0.00	-0.03
	TS	0.82	-0.33	0.49	-0.18	-0.04	0.27
Ar	Endo	2.77	-1.12	1.66	-0.39	-0.25	1.02
	Exo	0.13	-0.05	0.08	-0.13	-0.01	-0.06
	TS	2.82	-1.12	1.70	-0.32	-0.26	1.12
*All the energy values are given in eV							

S10. Photophysical properties of the complexes

Figure S12. Optical absorption spectra of the complexes. (a) Complexes of Li with BTH, (b) Complexes of noble gases with BTH, (c) Complexes of Li and Li⁺ with BIN, (d) Complexes of Na and Na⁺ with BIN, (e) Complexes of Ne with BIN, and (f) Complexes of Ar with BIN.

		Excitation	Absorption
System	Oscillatory	Wavelength (λ)	coefficient (ɛ) in
	strength (f)	in nm	Lmol ⁻¹ cm ⁻¹
Li@BTH	0.01	868.31	435.01
	0.04	448.87	4124.24
	0.08	424.93	4478.70
	0.03	380.29	2902.78
LiBTH	0.01	667.47	613.22
	0.01	361.09	1609.70
	0.02	354.44	1565.41
Li+@BTH	0.02	293.16	547.26
	0.05	232.52	1640.50
Li ⁺ BTH	0.02	259.95	1618.18
	0.03	243.51	1768.17
NeBTH	0.03	315.55	939.42
	0.05	251.78	1786.35
ArBTH	0.03	315.63	931.13
	0.05	251.85	1779.11
Li@BIN	0.06	498.14	4390.06
	0.02	448.56	4657.02
	0.07	444.13	4485.18
Li+@BIN	0.01	339.04	440.91
	0.04	255.23	1431.92
Na@BIN	0.06	549.69	3801.14
	0.01	486.10	4300.88
	0.07	462.49	3965.18
Na+@BIN	0.01	329.92	389.25
	0.03	248.32	1165.34
K@BIN	0.07	636.52	3059.29
	0.01	553.99	3501.68
	0.07	470.60	3489.31
	0.02	435.44	2716.56

Table S9. Spectral data for most important electronic excitations in the complexes.

KBIN	0.01	680.73	629.62
	0.03	500.70	3252.67
	0.03	465.58	3675.67
	0.02	459.78	3669.57
	0.04	417.98	2780.99
Ne@BIN	0.02	332.42	539.10
	0.04	251.28	1270.19
NeBIN	0.02	339.26	610.14
	0.04	256.52	1397.22
Ar@BIN	0.01	323.80	470.63
	0.03	245.93	1131.76
ArBIN	0.02	339.31	606.79
	0.04	256.59	1393.79

S11. AIMD Simulations

Figure S13. Variation in geometrical parameters during the AIMD simulations. (a) Variation in distance between metal and methanetriyl group (d_1 and d_2), (b) variation in distance between two arms of the cage (d_5), and (c) variation in angle a_1 and a_2 (the notations used for geometrical parameters are illustrated in scheme).

Figure S14. Variation in *IE* and its various energy components during the AIMD simulations complexes of Na and Li⁺ with BIN cage.

S12. CARTESIAN COORDINATES

Neutral BTH

С	0.00000000	1.35173900	1.73658400
С	0.00000000	1.95788800	0.69299000
С	0.00000000	1.95788800	-0.69299000
С	0.00000000	1.35173900	-1.73658400
С	-1.17064000	-0.67586900	1.73658400
С	0.00000000	0.00000000	2.38563200
С	0.00000000	0.00000000	-2.38563200
С	-1.17064000	-0.67586900	-1.73658400
С	-1.69558100	-0.97894400	-0.69299000
С	-1.69558100	-0.97894400	0.69299000
С	1.17064000	-0.67586900	1.73658400
С	1.17064000	-0.67586900	-1.73658400
С	1.69558100	-0.97894400	-0.69299000
С	1.69558100	-0.97894400	0.69299000
Η	0.00000000	0.00000000	3.47186000
Η	0.00000000	0.00000000	-3.47186000

Anionic BTH

С	-1.16065200	1.74956300	-0.67561600
С	-1.69035300	0.69065200	-0.93620300
С	-1.69035300	-0.69065200	-0.93620300
С	-1.16065200	-1.74956300	-0.67561600
С	0.00000000	1.88479300	1.46555800
С	0.00000000	2.40806800	0.00095200
С	0.00000000	-2.40806800	0.00095200
С	0.00000000	-1.88479300	1.46555800
С	0.00000000	-0.66735800	1.76661300
С	0.00000000	0.66735800	1.76661300
С	1.16065200	1.74956300	-0.67561600
С	1.16065200	-1.74956300	-0.67561600
С	1.69035300	-0.69065200	-0.93620300
С	1.69035300	0.69065200	-0.93620300
Η	0.00000000	3.49229300	-0.05690700
Η	0.00000000	-3.49229300	-0.05690700

Cationic BTH

С	0.00000000	1.75473300	1.39583900
С	0.00000000	0.69197800	1.96714400
С	0.00000000	-0.69197800	1.96714400
С	0.00000000	-1.75473300	1.39583900
С	1.08504600	1.73159400	-0.68301700
С	0.00000000	2.43034000	0.06509300
С	0.00000000	-2.43034000	0.06509300
С	1.08504600	-1.73159400	-0.68301700
С	1.59240400	-0.67847900	-1.03405900
С	1.59240400	0.67847900	-1.03405900
С	-1.08504600	1.73159400	-0.68301700
С	-1.08504600	-1.73159400	-0.68301700
С	-1.59240400	-0.67847900	-1.03405900
С	-1.59240400	0.67847900	-1.03405900
Η	0.00000000	3.51643400	0.03645000
Η	0.00000000	-3.51643400	0.03645000

Neutral BIN

С	0.00000000	2.61988300	0.60530700
С	0.00000000	2.61988300	-0.60530700
С	-1.84335000	-1.06425800	1.88578500
С	-1.17156600	-0.67640400	2.80874600
С	0.00000000	2.12851700	1.88578500
С	0.00000000	0.00000000	3.42341200
С	0.00000000	1.35280800	2.80874600
С	0.00000000	2.12851700	-1.88578500
С	0.00000000	1.35280800	-2.80874600

С	0.00000000	0.00000000	-3.42341200
С	-1.17156600	-0.67640400	-2.80874600
С	-1.84335000	-1.06425800	-1.88578500
С	-2.26888500	-1.30994200	-0.60530700
С	-2.26888500	-1.30994200	0.60530700
С	1.84335000	-1.06425800	1.88578500
С	2.26888500	-1.30994200	0.60530700
С	1.17156600	-0.67640400	2.80874600
С	2.26888500	-1.30994200	-0.60530700
С	1.84335000	-1.06425800	-1.88578500
С	1.17156600	-0.67640400	-2.80874600
Η	0.00000000	0.00000000	-4.51219700
Η	0.00000000	0.00000000	4.51219700

Cationic BIN

С	0.00000000	0.60512900	2.62802700
С	0.00000000	-0.60512900	2.62802700
С	1.72988200	1.87603600	-1.10345900
С	1.10058700	2.81884900	-0.66248600
С	0.00000000	1.89002900	2.15114000
С	0.00000000	3.47870700	0.07591300
С	0.00000000	2.84396900	1.41405100
С	0.00000000	-1.89002900	2.15114000
С	0.00000000	-2.84396900	1.41405100
С	0.00000000	-3.47870700	0.07591300
С	1.10058700	-2.81884900	-0.66248600
С	1.72988200	-1.87603600	-1.10345900
С	2.10956900	-0.61139800	-1.37279300
С	2.10956900	0.61139800	-1.37279300
С	-1.72988200	1.87603600	-1.10345900
С	-2.10956900	0.61139800	-1.37279300
С	-1.10058700	2.81884900	-0.66248600
С	-2.10956900	-0.61139800	-1.37279300
С	-1.72988200	-1.87603600	-1.10345900
С	-1.10058700	-2.81884900	-0.66248600
Η	0.00000000	-4.56694200	0.05008000
Н	0.00000000	4.56694200	0.05008000

Anionic BIN

С	2.25503500	0.60659400	-1.17964800
С	2.25503500	-0.60659400	-1.17964800
С	-1.84204800	1.89599800	-0.97126800
С	-1.15678000	2.83508000	-0.63927300
С	1.84204800	1.89599800	-0.97126800
С	0.00000000	3.50726600	-0.00428100
С	1.15678000	2.83508000	-0.63927300
С	1.84204800	-1.89599800	-0.97126800
С	1.15678000	-2.83508000	-0.63927300

С	0.00000000	-3.50726600	-0.00428100
С	-1.15678000	-2.83508000	-0.63927300
С	-1.84204800	-1.89599800	-0.97126800
С	-2.25503500	-0.60659400	-1.17964800
С	-2.25503500	0.60659400	-1.17964800
С	0.00000000	1.91226200	1.91109000
С	0.00000000	0.62287700	2.22807400
С	0.00000000	3.08139200	1.46806300
С	0.00000000	-0.62287700	2.22807400
С	0.00000000	-1.91226200	1.91109000
С	0.00000000	-3.08139200	1.46806300
Η	0.00000000	-4.58740000	-0.13539500
Η	0.00000000	4.58740000	-0.13539500

Endohedral complex of Li⁺ with BTH (Li⁺@BTH)

С	0.00000000	1.36004500	1.72391600
С	0.00000000	2.00592400	0.69948700
С	0.00000000	2.00592400	-0.69948700
С	0.00000000	1.36004500	-1.72391600
С	-1.17783300	-0.68002200	1.72391600
С	0.00000000	0.00000000	2.38727500
С	0.00000000	0.00000000	-2.38727500
С	-1.17783300	-0.68002200	-1.72391600
С	-1.73718100	-1.00296200	-0.69948700
С	-1.73718100	-1.00296200	0.69948700
С	1.17783300	-0.68002200	1.72391600
С	1.17783300	-0.68002200	-1.72391600
С	1.73718100	-1.00296200	-0.69948700
С	1.73718100	-1.00296200	0.69948700
Н	0.00000000	0.00000000	3.47448600
Н	0.00000000	0.00000000	-3.47448600
Li	0.00000000	0.00000000	0.00000000

TS complex of Li⁺ with BTH (Li^{+TS}@BTH)

С	1.20707400	1.70162100	0.64892300
С	1.85215900	0.70480500	0.90330900
С	1.85215900	-0.70480500	0.90330900
С	1.20707400	-1.70162100	0.64892300
С	-1.20707400	1.70162100	0.64892300
С	0.00000000	2.36872900	0.00481000
С	0.00000000	-2.36872900	0.00481000
С	-1.20707400	-1.70162100	0.64892300
С	-1.85215900	-0.70480500	0.90330900
С	-1.85215900	0.70480500	0.90330900
С	0.00000000	1.74100400	-1.35538600
С	0.00000000	-1.74100400	-1.35538600
С	0.00000000	-0.69303200	-1.95459100

С	0.00000000	0.69303200	-1.95459100
Η	0.00000000	3.45523200	0.04787500
Н	0.00000000	-3.45523200	0.04787500
Li	0.00000000	0.00000000	0.77090100

Exohedral complex of Li^+ with BTH (Li^+ ...BTH)

С	-1.16630900	1.71857100	0.60527000
С	-1.75177200	0.69702400	0.88349900
С	-1.75177200	-0.69702400	0.88349900
С	-1.16630900	-1.71857100	0.60527000
С	0.00000000	1.74372600	-1.41760200
С	0.00000000	2.38863500	-0.06970000
С	0.00000000	-2.38863500	-0.06970000
С	0.00000000	-1.74372600	-1.41760200
С	0.00000000	-0.69199500	-2.00802900
С	0.00000000	0.69199500	-2.00802900
С	1.16630900	1.71857100	0.60527000
С	1.16630900	-1.71857100	0.60527000
С	1.75177200	-0.69702400	0.88349900
С	1.75177200	0.69702400	0.88349900
Η	0.00000000	3.47519500	-0.04308800
Н	0.00000000	-3.47519500	-0.04308800
Li	0.00000000	0.00000000	2.09989700

Endohedral complex of Li with BTH (Li@BTH)

С	1.16642400	1.72802900	0.68925800
С	1.74711000	0.69573700	0.96666100
С	1.74711000	-0.69573700	0.96666100
С	1.16642400	-1.72802900	0.68925800
С	-1.16642400	1.72802900	0.68925800
С	0.00000000	2.39314600	0.00749800
С	0.00000000	-2.39314600	0.00749800
С	-1.16642400	-1.72802900	0.68925800
С	-1.74711000	-0.69573700	0.96666100
С	-1.74711000	0.69573700	0.96666100
С	0.00000000	1.84789300	-1.45378300
С	0.00000000	-1.84789300	-1.45378300
С	0.00000000	-0.67440600	-1.88263500
С	0.00000000	0.67440600	-1.88263500
Н	0.00000000	3.47643100	0.05817300
Η	0.00000000	-3.47643100	0.05817300
Li	0.00000000	0.00000000	0.02954400

TS complex of Li with BTH (Li^{TS}@BTH)

С	-1.70896900	-1.28616900	0.47637100
С	-0.70977900	-1.95749600	0.66691300
С	0.69513400	-1.96280600	0.65299400

С	1.69512900	-1.29786400	0.44495800
С	-1.75111200	0.16619900	-1.33200800
С	-2.37477100	-0.00522000	0.01241500
С	2.37425700	-0.01765900	0.01005600
С	1.75300000	0.18034100	-1.33116900
С	0.68874300	0.31875800	-1.89717700
С	-0.68736100	0.31009700	-1.89767400
С	-1.80858700	1.15914300	0.89629700
С	1.82016700	1.13332400	0.92617100
С	0.68668500	1.66076600	1.02138700
С	-0.67002200	1.66971500	1.00784900
Н	-3.45843700	-0.04443600	0.03245100
Н	3.45746700	-0.06748100	0.03060900
Li	-0.00470400	-0.10495200	0.66421200

Exohedral complex of Li with BTH (Li...BTH)

С	-0.17006400	1.41186200	1.85457600
С	0.04163800	1.77670200	0.66803000
С	0.04163800	1.77670200	-0.66803000
С	-0.17006400	1.41186200	-1.85457600
С	1.27112000	-0.57402200	1.74892900
С	0.04727100	-0.03212000	2.40001900
С	0.04727100	-0.03212000	-2.40001900
С	1.27112000	-0.57402200	-1.74892900
С	1.82053100	-0.77441600	-0.68969700
С	1.82053100	-0.77441600	0.68969700
С	-1.02740700	-0.81679400	1.71819500
С	-1.02740700	-0.81679400	-1.71819500
С	-1.54934300	-1.20961600	-0.69667600
С	-1.54934300	-1.20961600	0.69667600
Н	0.02432800	-0.07998800	3.48360200
Н	0.02432800	-0.07998800	-3.48360200
Li	-1.75120000	0.92694900	0.00000000

Endohedral complex of Ne with BTH (Ne@BTH)

С	0.00000000	1.42154700	1.70252100
С	0.00000000	2.12581800	0.70929000
С	0.00000000	2.12581800	-0.70929000
С	0.00000000	1.42154700	-1.70252100
С	1.23109600	-0.71077300	1.70252100
С	0.00000000	0.00000000	2.30008800
С	0.00000000	0.00000000	-2.30008800
С	1.23109600	-0.71077300	-1.70252100
С	1.84101300	-1.06290900	-0.70929000
С	1.84101300	-1.06290900	0.70929000
С	-1.23109600	-0.71077300	1.70252100
С	-1.23109600	-0.71077300	-1.70252100
С	-1.84101300	-1.06290900	-0.70929000

С	-1.84101300	-1.06290900	0.70929000
Н	0.00000000	0.00000000	3.38570400
Н	0.00000000	0.00000000	-3.38570400
Ne	0.00000000	0.00000000	0.00000000

TS complex of Ne with BTH (Ne^{TS}@BTH)

С	0.00000000	1.71100900	-1.34552400
С	0.00000000	0.69335300	-1.99625700
С	0.00000000	-0.69335300	-1.99625700
С	0.00000000	-1.71100900	-1.34552400
С	1.32893500	1.69772000	0.61178600
С	0.00000000	2.29834100	0.03252400
С	0.00000000	-2.29834100	0.03252400
С	1.32893500	-1.69772000	0.61178600
С	2.03709700	-0.71739100	0.78880700
С	2.03709700	0.71739100	0.78880700
С	-1.32893500	1.69772000	0.61178600
С	-1.32893500	-1.69772000	0.61178600
С	-2.03709700	-0.71739100	0.78880700
С	-2.03709700	0.71739100	0.78880700
Н	0.00000000	3.38323000	0.06728300
Н	0.00000000	-3.38323000	0.06728300
Ne	0.00000000	0.00000000	0.59622900

Exohedral complex of Ne with BTH (Ne...BTH)

С	0.00000000	1.73628000	-1.73188100
С	0.00000000	0.69296900	-2.33864600
С	0.00000000	-0.69296900	-2.33864600
С	0.00000000	-1.73628000	-1.73188100
С	1.17056100	1.73665000	0.29528400
С	0.00000000	2.38532900	-0.38053300
С	0.00000000	-2.38532900	-0.38053300
С	1.17056100	-1.73665000	0.29528400
С	1.69625200	-0.69290400	0.59688100
С	1.69625200	0.69290400	0.59688100
С	-1.17056100	1.73665000	0.29528400
С	-1.17056100	-1.73665000	0.29528400
С	-1.69625200	-0.69290400	0.59688100
С	-1.69625200	0.69290400	0.59688100
Н	0.00000000	3.47171100	-0.38078200
Н	0.00000000	-3.47171100	-0.38078200
Ne	0.00000000	0.00000000	3.27623300

Exohedral complex of Ar with BTH (Ar...BTH)

С	-1.17043800	1.73660500	-0.00959100
С	-1.69680800	0.69295400	0.29132900
С	-1.69680800	-0.69295400	0.29132900

С	-1.17043800	-1.73660500	-0.00959100
С	0.00000000	1.73666000	-2.03674100
С	0.00000000	2.38559300	-0.68527300
С	0.00000000	-2.38559300	-0.68527300
С	0.00000000	-1.73666000	-2.03674100
С	0.00000000	-0.69295000	-2.64290400
С	0.00000000	0.69295000	-2.64290400
С	1.17043800	1.73660500	-0.00959100
С	1.17043800	-1.73660500	-0.00959100
С	1.69680800	-0.69295400	0.29132900
С	1.69680800	0.69295400	0.29132900
Н	0.00000000	3.47195600	-0.68523200
Н	0.00000000	-3.47195600	-0.68523200
Ar	0.00000000	0.00000000	3.27709800

Endohedral complex of Li $^+$ with BIN (Li $^+$ @BIN)

С	0.00000000	2.51953200	-0.59752400
С	0.00000000	2.49632000	0.61553100
С	1.80550700	-1.04241000	-1.90028400
С	1.16164200	-0.67067400	-2.85089800
С	0.00000000	2.08482000	-1.90028400
С	0.00000000	0.00000000	-3.49456600
С	0.00000000	1.34134900	-2.85089800
С	0.00000000	2.08776800	1.92475700
С	0.00000000	1.33940300	2.86932000
С	0.00000000	0.00000000	3.51265200
С	1.15995700	-0.66970200	2.86932000
С	1.80806000	-1.04388400	1.92475700
С	2.16187700	-1.24816000	0.61553100
С	2.18197900	-1.25976600	-0.59752400
С	-1.80550700	-1.04241000	-1.90028400
С	-2.18197900	-1.25976600	-0.59752400
С	-1.16164200	-0.67067400	-2.85089800
С	-2.16187700	-1.24816000	0.61553100
С	-1.80806000	-1.04388400	1.92475700
С	-1.15995700	-0.66970200	2.86932000
Η	0.00000000	0.00000000	4.60145200
Н	0.00000000	0.00000000	-4.58324100
Li	0.00000000	0.00000000	-0.40766400

Endohedral complex of Li with BIN (Li@BIN)

С	2.13289700	0.60814700	-1.14736400
С	2.13289700	-0.60814700	-1.14736400
С	-1.78783500	1.92141700	-0.97115300
С	-1.14721500	2.89451400	-0.64770500
С	1.78783500	1.92141700	-0.97115300
С	0.00000000	3.57763500	-0.00332300
С	1.14721500	2.89451400	-0.64770500

С	1.78783500	-1.92141700	-0.97115300
С	1.14721500	-2.89451400	-0.64770500
С	0.00000000	-3.57763500	-0.00332300
С	-1.14721500	-2.89451400	-0.64770500
С	-1.78783500	-1.92141700	-0.97115300
С	-2.13289700	-0.60814700	-1.14736400
С	-2.13289700	0.60814700	-1.14736400
С	0.00000000	1.92304300	1.89794200
С	0.00000000	0.62335600	2.20516900
С	0.00000000	3.07272100	1.43143600
С	0.00000000	-0.62335600	2.20516900
С	0.00000000	-1.92304300	1.89794200
С	0.00000000	-3.07272100	1.43143600
Н	0.00000000	-4.65987700	-0.09909900
Н	0.00000000	4.65987700	-0.09909900
Li	0.00000000	0.00000000	0.07095000

Endohedral complex of Na⁺ with BIN (Na⁺@BIN)

С	0.00000000	2.65846200	0.60633400
С	0.00000000	2.65846200	-0.60633400
С	-1.86507800	-1.07680300	1.88507600
С	-1.16845500	-0.67460800	2.78397300
С	0.00000000	2.15360600	1.88507600
С	0.00000000	0.00000000	3.40929700
С	0.00000000	1.34921600	2.78397300
С	0.00000000	2.15360600	-1.88507600
С	0.00000000	1.34921600	-2.78397300
С	0.00000000	0.00000000	-3.40929700
С	-1.16845500	-0.67460800	-2.78397300
С	-1.86507800	-1.07680300	-1.88507600
С	-2.30229600	-1.32923100	-0.60633400
С	-2.30229600	-1.32923100	0.60633400
С	1.86507800	-1.07680300	1.88507600
С	2.30229600	-1.32923100	0.60633400
С	1.16845500	-0.67460800	2.78397300
С	2.30229600	-1.32923100	-0.60633400
С	1.86507800	-1.07680300	-1.88507600
С	1.16845500	-0.67460800	-2.78397300
Н	0.00000000	0.00000000	-4.49895500
Н	0.00000000	0.00000000	4.49895500
Na	0.00000000	0.00000000	0.00000000

Endohedral complex of Na with BIN (Na@BIN)

С	0.00000000	0.62406700	-2.37844600
С	0.00000000	-0.62406700	-2.37844600
С	-1.88065600	1.88686000	0.99422800
С	-1.15428200	2.78852300	0.64351800

С	0.00000000	1.89520300	-1.97544300
С	0.00000000	3.46510200	0.00865600
С	0.00000000	3.02232600	-1.44883500
С	0.00000000	-1.89520300	-1.97544300
С	0.00000000	-3.02232600	-1.44883500
С	0.00000000	-3.46510200	0.00865600
С	-1.15428200	-2.78852300	0.64351800
С	-1.88065600	-1.88686000	0.99422800
С	-2.32596100	-0.60777300	1.21431000
С	-2.32596100	0.60777300	1.21431000
С	1.88065600	1.88686000	0.99422800
С	2.32596100	0.60777300	1.21431000
С	1.15428200	2.78852300	0.64351800
С	2.32596100	-0.60777300	1.21431000
С	1.88065600	-1.88686000	0.99422800
С	1.15428200	-2.78852300	0.64351800
Н	0.00000000	-4.54514400	0.13926300
Н	0.00000000	4.54514400	0.13926300
Na	0.00000000	0.00000000	0.07281400

Endohedral complex of K with BIN (K@BIN)

С	2.45020700	-1.33656300	0.60850000
С	2.45020700	-1.33656300	-0.60850000
С	0.04464400	2.08503500	1.84896700
С	0.02886400	1.44202400	2.91144200
С	1.94430800	-1.08027300	1.86186700
С	-0.00165700	-0.01797300	3.33879900
С	1.15798700	-0.68785100	2.69606200
С	1.94430800	-1.08027300	-1.86186700
С	1.15798700	-0.68785100	-2.69606200
С	-0.00165700	-0.01797300	-3.33879900
С	0.02886400	1.44202400	-2.91144200
С	0.04464400	2.08503500	-1.84896700
С	0.05951700	2.62635900	-0.62431700
С	0.05951700	2.62635900	0.62431700
С	-1.98660600	-1.00735100	1.86179400
С	-2.50180700	-1.24611300	0.60851300
С	-1.18659000	-0.64157400	2.69511300
С	-2.50180700	-1.24611300	-0.60851300
С	-1.98660600	-1.00735100	-1.86179400
С	-1.18659000	-0.64157400	-2.69511300
Н	-0.00482200	-0.14124600	-4.42139400
Н	-0.00482200	-0.14124600	4.42139400
Κ	-0.00509300	-0.07084900	0.00000000

TS complex of K with BIN (K^{TS}@BIN)

С	0.62479500	-2.31614500	-1.33289300
С	-0.62479100	-2.31614300	-1.33290500
С	1.85800800	2.26757600	-0.27852900
С	2.66276600	1.36148600	-0.24723700
С	1.84011900	-1.77023600	-1.16161000
С	3.31867800	0.03757400	-0.02501000
С	2.78096900	-0.96274200	-1.03741300
С	-1.84011100	-1.77023300	-1.16161300
С	-2.78096000	-0.96274200	-1.03741800
С	-3.31867800	0.03757200	-0.02501900
С	-2.66276500	1.36148400	-0.24724100
С	-1.85800700	2.26757200	-0.27853700
С	-0.60853200	2.86077500	-0.27726000
С	0.60853000	2.86077700	-0.27725900
С	1.87531800	-0.67360500	2.03048200
С	0.60745400	-0.87004300	2.49324600
С	2.78688300	-0.36106000	1.29801600
С	-0.60746800	-0.87004300	2.49324700
С	-1.87533100	-0.67360400	2.03048200
С	-2.78689100	-0.36105800	1.29801100
Н	-4.40434300	0.11573000	-0.06593300
Н	4.40434400	0.11573200	-0.06591500
Κ	0.00000500	0.25713500	-0.91628300

Exohedral complex of K with BIN (K...BIN)

С	0.62433600	0.09969600	2.29806000
С	-0.62451200	0.10029000	2.29789100
С	1.88051200	-1.20773900	-1.69435200
С	2.75972100	-0.67512500	-1.05763500
С	1.87748300	-0.00031100	1.86484800
С	3.44290600	0.22966500	-0.10481000
С	2.96214300	-0.19850300	1.27809500
С	-1.87767800	0.00090200	1.86465100
С	-2.96230100	-0.19724900	1.27769800
С	-3.44235200	0.23127100	-0.10544100
С	-2.75944700	-0.67396300	-1.05805000
С	-1.88032900	-1.20695000	-1.69459200
С	-0.60719400	-1.51552200	-2.10717300
С	0.60725700	-1.51570100	-2.10698700
С	1.88814900	2.29204600	-0.53145400
С	0.60723900	2.76544800	-0.61117200
С	2.82614500	1.54042500	-0.40831100
С	-0.60526600	2.76562800	-0.61130100
С	-1.88643400	2.29288400	-0.53183900
С	-2.82472900	1.54161800	-0.40882700
Н	-4.52580000	0.21039500	-0.20332300

Η	4.52636900	0.20813800	-0.20238700
Κ	-0.00181400	-2.12796800	0.70052200

Endohedral complex of Ne with BIN (Ne@BIN)

С	0.00000000	2.73905700	0.60558700
С	0.00000000	2.73905700	-0.60558700
С	-1.89731700	-1.09541700	1.86516400
С	-1.17853600	-0.68042800	2.73988900
С	0.00000000	2.19083300	1.86516400
С	0.00000000	0.00000000	3.33768800
С	0.00000000	1.36085600	2.73988900
С	0.00000000	2.19083300	-1.86516400
С	0.00000000	1.36085600	-2.73988900
С	0.00000000	0.00000000	-3.33768800
С	-1.17853600	-0.68042800	-2.73988900
С	-1.89731700	-1.09541700	-1.86516400
С	-2.37209300	-1.36952900	-0.60558700
С	-2.37209300	-1.36952900	0.60558700
С	1.89731700	-1.09541700	1.86516400
С	2.37209300	-1.36952900	0.60558700
С	1.17853600	-0.68042800	2.73988900
С	2.37209300	-1.36952900	-0.60558700
С	1.89731700	-1.09541700	-1.86516400
С	1.17853600	-0.68042800	-2.73988900
Н	0.00000000	0.00000000	-4.42745900
Н	0.00000000	0.00000000	4.42745900
Ne	0.00000000	0.00000000	0.00000000

TS complex of Ne with BIN (Ne^{TS}@BIN)

С	0.00000000	0.60518800	-2.72704600
С	0.00000000	-0.60518800	-2.72704600
С	-2.00333700	1.85065500	0.93250100
С	-1.20106200	2.69688000	0.62266600
С	0.00000000	1.87113100	-2.20112800
С	0.00000000	3.30975700	-0.00597500
С	0.00000000	2.75869400	-1.38564700
С	0.00000000	-1.87113100	-2.20112800
С	0.00000000	-2.75869400	-1.38564700
С	0.00000000	-3.30975700	-0.00597500
С	-1.20106200	-2.69688000	0.62266600
С	-2.00333700	-1.85065500	0.93250100
С	-2.55777700	-0.60593700	1.12804500
С	-2.55777700	0.60593700	1.12804500
С	2.00333700	1.85065500	0.93250100
С	2.55777700	0.60593700	1.12804500
С	1.20106200	2.69688000	0.62266600
С	2.55777700	-0.60593700	1.12804500

С	2.00333700	-1.85065500	0.93250100
С	1.20106200	-2.69688000	0.62266600
Н	0.00000000	-4.39888900	0.03679300
Н	0.00000000	4.39888900	0.03679300
Ne	0.00000000	0.00000000	1.13668900
H H Ne	0.00000000 0.00000000 0.00000000	-2.09088000 -4.39888900 4.39888900 0.00000000	0.0367930 0.0367930 1.1366890

Exohedral complex of Ne with BIN (Ne...BIN)

С	0.95225300	-0.65754800	2.27279800
С	1.11417600	0.54216800	2.27148300
С	-2.62153700	-1.47795500	0.00000000
С	-1.97285600	-2.49421900	0.00000000
С	0.54214100	-1.89436100	1.84519000
С	-0.71166300	-3.27956800	0.00000000
С	0.03893900	-2.75847900	1.17162300
С	1.03909200	1.84321900	1.84438600
С	0.77625300	2.80862500	1.17170700
С	0.18590100	3.50589500	0.00000000
С	-1.23553500	3.07332500	0.00000000
С	-2.12548000	2.25994800	0.00000000
С	-2.78151400	1.05564300	0.00000000
С	-2.94144000	-0.14434200	0.00000000
С	0.54214100	-1.89436100	-1.84519000
С	0.95225300	-0.65754800	-2.27279800
С	0.03893900	-2.75847900	-1.17162300
С	1.11417600	0.54216800	-2.27148300
С	1.03909200	1.84321900	-1.84438600
С	0.77625300	2.80862500	-1.17170700
Н	0.32784300	4.58544500	0.00000000
Η	-0.85317200	-4.35916200	0.00000000
Ne	3.21958300	-1.38221300	0.00000000

Endohedral complex of Ar with BIN (Ar@BIN)

С	0.00000000	2.86970900	0.60690200
С	0.00000000	2.86970900	-0.60690200
С	-1.97137200	-1.13817200	1.85351300
С	-1.19632500	-0.69069800	2.66485900
С	0.00000000	2.27634400	1.85351300
С	0.00000000	0.00000000	3.23240100
С	0.00000000	1.38139700	2.66485900
С	0.00000000	2.27634400	-1.85351300
С	0.00000000	1.38139700	-2.66485900
С	0.00000000	0.00000000	-3.23240100
С	-1.19632500	-0.69069800	-2.66485900
С	-1.97137200	-1.13817200	-1.85351300
С	-2.48524100	-1.43485500	-0.60690200
С	-2.48524100	-1.43485500	0.60690200

С	1.97137200	-1.13817200	1.85351300
С	2.48524100	-1.43485500	0.60690200
С	1.19632500	-0.69069800	2.66485900
С	2.48524100	-1.43485500	-0.60690200
С	1.97137200	-1.13817200	-1.85351300
С	1.19632500	-0.69069800	-2.66485900
Н	0.00000000	0.00000000	-4.32343400
Н	0.00000000	0.00000000	4.32343400
Ar	0.00000000	0.00000000	0.00000000

TS complex of Ar with BIN (Ar^{TS}@BIN)

С	0.00000000	0.60519900	-2.75425200
С	0.00000000	-0.60519900	-2.75425200
С	-2.14326600	1.84865400	0.84680500
С	-1.24757500	2.63069400	0.62086700
С	0.00000000	1.85951900	-2.20193200
С	0.00000000	3.22599400	0.03876800
С	0.00000000	2.71895900	-1.35715100
С	0.00000000	-1.85951900	-2.20193200
С	0.00000000	-2.71895900	-1.35715100
С	0.00000000	-3.22599400	0.03876800
С	-1.24757500	-2.63069400	0.62086700
С	-2.14326600	-1.84865400	0.84680500
С	-2.74511400	-0.60806200	0.98540100
С	-2.74511400	0.60806200	0.98540100
С	2.14326600	1.84865400	0.84680500
С	2.74511400	0.60806200	0.98540100
С	1.24757500	2.63069400	0.62086700
С	2.74511400	-0.60806200	0.98540100
С	2.14326600	-1.84865400	0.84680500
С	1.24757500	-2.63069400	0.62086700
Н	0.00000000	-4.31461000	0.10681200
Н	0.00000000	4.31461000	0.10681200
Ar	0.00000000	0.00000000	0.90041200

Exohedral complex of Ar with BIN (Ar^{TS}@BIN)

С	0.57391500	-0.72770800	2.27706900
С	1.00804600	0.40238100	2.27517900
С	-3.08565400	-0.69685700	0.00000000
С	-2.69129800	-1.83619500	0.00000000
С	-0.10948100	-1.83636500	1.84737400
С	-1.64729400	-2.89340700	0.00000000
С	-0.79659200	-2.56099800	1.17179600
С	1.23982900	1.68408100	1.84609200
С	1.20977500	2.68319300	1.17193200
С	0.79887800	3.49875500	0.00000000
С	-0.68434100	3.40963700	0.00000000

С	-1.73881600	2.82510000	0.00000000
С	-2.65598200	1.80546800	0.00000000
С	-3.08791200	0.67453800	0.00000000
С	-0.10948100	-1.83636500	-1.84737400
С	0.57391500	-0.72770800	-2.27706900
С	-0.79659200	-2.56099800	-1.17179600
С	1.00804600	0.40238100	-2.27517900
С	1.23982900	1.68408100	-1.84609200
С	1.20977500	2.68319300	-1.17193200
Н	1.18903000	4.51529200	0.00000000
Н	-2.03616900	-3.91041100	0.00000000
Ar	2.89420900	-2.05900700	0.00000000