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Computational method

Density Functional Theory Calculation

The γ-CsSnI3 (202) slab model terminated with Cs-I was constructed with 7 octahedral 

layers (i.e., 15 atomic layers) and a 16 Å vacuum layer along normal direction based on our 

previous convergence test (Figure S1).1, 2 The iodine anions at the surface of slab model were 

removed for modeling surface VI, and pseudo-halide anions were situated at VI to simulate 

passivated configurations. Based on the constructed models, first-principles calculations were 

performed by employing Vienna ab-initio simulation package (VASP) code.3, 4 The Perdew-

Burke-Ernzerhof (PBE) type of generalized gradient approximation (GGA) functional, which 

contains information about local electron density and local gradient in the electron density, was 

adopted to define the approximate exchange-correlation functional.5 The pseudopotentials of 

elements were based on projector-augmented wave (PAW) method.6 The long-range weak van 

der Waals interaction was treated by the Grimme’s DFT-D3.7, 8 The dipole correction along 

lattice c was implemented to remove additional field. The cutoff energy was set as 460 eV, and 

the Brillouin zone was sampled by a Monkhorst-Pack K-point mesh with grid of 3×5×1 after 

convergence test. The upper five atomic layers and pseudo-halide anions were fully relaxed and 

served as surface component, while the other atoms were fixed and simulated bulk component 

during the theoretical simulation. The convergency criteria of energy and Hellman-Feynman 

forces on individual atom were 1×10-4 eV/atom and 0.05 eV/Å, respectively. 

Because the Cs, Pb and I are not the light elements that one can neglect relativistic spin-

orbit coupling. The spin-orbital coupling (SOC) effect is introduced in typical γ-CsSnI3 and β-

CsPbI3 passivated configuration, determining whether SOC effect would change the 

computational results based on PBE+SOC.

The van der Waals volume of pseudo-halide anions were calculated within the framework 

of density functional theory using the hybrid functional of B3LYP with a basis set 6-31+G* as 

implemented in the Gaussian16 program.

Ab-initio Molecular Dynamics

The ab-initio molecular dynamics (AIMD) simulations under 300 K were implemented to 

evaluate the stability of passivated configurations with low energy thermal excitation. The 

ensemble was chosen as NVT with a Nosé-Hoover thermostat.9, 10 The time step and the 
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simulation time were set as 1 fs and 5 ps, respectively. The simulations were performed at the 

Г-point, and the calculations of other parameters were performed based on above-mentioned 

method.
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Figure S1. The schematic diagram of pristine γ-CsSnI3 slab.
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Figure S2. The structures of CN-, SCN-, Ac-, BF4
- and PF6

- pseudo-halide anions.
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Figure S3. The net charges of six iodine anions at the first layer of pristine slab.
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Figure S4. (a-f) The potential sites for the formation of surface VI in CN--passivated 

configurations with 0, 1/6, 2/6, 3/6, 4/6 and 5/6 ML coverages, respectively.
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Figure S5. (a-f) The potential sites for the formation of surface VI in SCN--passivated 

configurations with 0, 1/6, 2/6, 3/6, 4/6 and 5/6 ML coverages, respectively.
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Figure S6. (a-f) The potential sites for the formation of surface VI in Ac--passivated 

configurations with 0, 1/6, 2/6, 3/6, 4/6 and 5/6 ML coverages, respectively.



S10

Figure S7. (a-f) The potential sites for the formation of surface VI in BF4
--passivated 

configurations with 0, 1/6, 2/6, 3/6, 4/6 and 5/6 ML coverages, respectively.
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Figure S8. (a-f) The potential sites for the formation of surface VI in PF6
--passivated 

configurations with 0, 1/6, 2/6, 3/6, 4/6 and 5/6 ML coverages, respectively.
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Figure S9. (a-c) The CDD between SCN-, Ac- and BF4
- anions at the first atomic layer and 

inferior Sn cations, respectively. The yellow and blue isosurfaces set as 0.005 e/a0
3 indicate the 

charge accumulation and depletion regions, respectively.
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Figure S10. The  of passivated configurations with different coverage under I-poor IV
formE

environment.
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Figure S11. The structures of CN--passivated configurations with different coverages after 

AIMD simulations.
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Figure S12. The structures of SCN--passivated configurations with different coverages after 

AIMD simulations.
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Figure S13. The structures of Ac--passivated configurations with different coverages after 

AIMD simulations.
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Figure S14. The structures of BF4
--passivated configurations with different coverages after 

AIMD simulations.
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Figure S15. The structures of PF6
--passivated configurations with different coverages after 

AIMD simulations.
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Figure S16. The structures and local surface structures of Ac--passivated configurations 

recorded at 0 and 5 ps of AIMD simulations.
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Figure S17. The RMSD of atoms within passivated configurations with 1 ML coverage, where 

the pseudohalide anions at the first atomic layer are not counted.
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Figure S18. The schematic diagram of pristine β-CsPbI3 slab.
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Figure S19. (a, b) The structures of β-CsPbI3 surface models passivated by CN- and PF6
- 

recorded at 0 and 5 ps of AIMD simulations, respectively. (c) The energies vs. relaxing times 

as results of thermal effect simulated by AIMD. 
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Table S1. The  of pristine γ-CsSnI3 slab under I-rich and I-poor environment.IV
formE

I II III IV V VI

I-rich 0.660 0.620 0.728 0.671 0.620 0.719

I-poor -0.040 -0.080 0.028 -0.029 -0.080 0.019
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Table S2. The  of CN--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-rich environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.739 0.634 0.658 0.708 0.709

2/6 0.794 0.722 0.775 0.710

3/6 0.752 0.716 0.816

4/6 0.645 0.5914

5/6 0.863
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Table S3. The  of CN--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-poor environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.039 -0.066 -0.042 0.008 0.009

2/6 0.094 0.022 0.075 0.010

3/6 0.062 0.016 0.116

4/6 -0.055 0.214

5/6 0.163
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Table S4. The  of SCN--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-rich environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.645 0.628 0.708 0.685 0.716

2/6 0.655 0.516 0.664 0.503

3/6 0.643 0.732 0.663

4/6 0.575 0.636

5/6 0.571
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Table S5. The  of SCN--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-poor environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 -0.055 -0.072 0.008 -0.015 0.016

2/6 -0.045 -0.184 -0.036 -0.197

3/6 -0.057 0.031 -0.037

4/6 -0.125 -0.064

5/6 -0.129
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Table S6. The  of Ac--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-rich environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.594 0.579 0.759 0.598 0.558

2/6 0.687 0.627 0.746 0.491

3/6 0.500 0.397 0.558

4/6 0.317 0.426

5/6 0.629
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Table S7. The  of Ac--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV
formE

coverage under I-poor environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 -0.106 -0.121 0.059 -0.102 -0.142

2/6 -0.013 -0.073 0.046 -0.209

3/6 -0.200 -0.303 -0.142

4/6 -0.383 -0.274

5/6 -0.071
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Table S8. The  of BF4
--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV

formE

coverage under I-rich environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.594 0.594 0.614 0.656 0.679

2/6 0.429 0.534 0.396 0.531

3/6 0.432 0.533 0.549

4/6 0.216 0.223

5/6 0.172
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Table S9. The  of BF4
--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV

formE

coverage under I-poor environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 -0.106 -0.106 -0.086 -0.044 -0.021

2/6 -0.271 -0.166 -0.305 -0.169

3/6 -0.268 -0.167 -0.151

4/6 -0.484 -0.477

5/6 -0.528
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Table S10. The  of PF6
--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV

formE

coverage under I-rich environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 0.663 0.618 0.614 0.532 0.687

2/6 0.673 0.485 0.484 0.592

3/6 0.452 0.065 0.217

4/6 0.327 0.111

5/6 0.074
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Table S11. The  of PF6
--passivated configurations with 1/6, 2/6, 3/6, 4/6 and 5/6 ML IV

formE

coverage under I-poor environment. 

x (coverage, ML) Ix IIx IIIx IVx Vx

1/6 -0.037 -0.082 -0.086 -0.168 -0.013

2/6 -0.027 -0.215 -0.216 -0.108

3/6 -0.247 -0.635 -0.483

4/6 -0.373 -0.589

5/6 -0.626
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Table S12. Eform of CN-, SCN- and PF6
--passivated configurations based on PBE+SOC.

Passivated Configurations Eform (eV/atom)
CN- -1.13

SCN- -1.07
PF6

- -1.24
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Table S13. The calculated vdW volume of pseudo-halide anions.

Pseudo-halide Anions CN- SCN- Ac- BF4
- PF6

-

Volume (Å3) 53.71 80.96 86.18 72.39 98.29
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Table S14. The main X-ray diffraction peaks of bulk β-CsPbI3.

Main Diffraction 
Peaks Reference

(220) (110) (002) 11
(220) (110) (111) 12
(220) (110) (002) 13

(220) (110) 14
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Table S15. Surface energies of β-CsPbI3 slab with Sn and Cs-I terminal ions.

Terminatio
n

Surface Energies 
(meV/Å2)

Pb-I 6.2
Cs-I 2.6
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Table S16. Eform of β-CsPbI3 slab passivated by CN- and PF6
- based on PBE+SOC.

Passivated Configurations Eform (eV/atom)
CN- -1.12
PF6

- -1.21
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Table S17. The average |ICOHP| of Pb2-I3 within pristine β-CsPbI3 slab and the counterpart 

passivated by CN- and PF6
-.

|ICOHP| (eV)
Pristine slab 1.21

CN--passivated configuration 1.00
PF6

--passivated configuration 1.91
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