Supplementary Information

Alternating Chiral and Achiral Spacers for Constructing Two-Dimensional Chiral

Hybrid Perovskites toward Circular-Polarization-Sensitive Photodetection

Shihai You, Panpan Yu, Tingting Zhu, Qianwen Guan, Jianbo Wu, Hongliang Dai, Haiqing Zhong, Zeng-Kui Zhu, and Junhua Luo*

*E-mail: jhluo@fjirsm.ac.cn

Experimental

Chemicals. All starting materials, lead acetate trihydrate (Pb(CH₃COO)₂·3H₂O, 99.5%, Aladdin), hydrobromic acid solution (HBr, 40% in water, Aladdin), *R*- or *S*-1-phenylpropylamine (*R/S*-PPA, 98%, Aladdin), *n*-pentylamine (PA, 98%, Aladdin), and N,N-dimethylformamide (DMF, 99.8%, Aladdin) for target compounds synthesis were commercial available and used without further purification.

Synthesis and Crystal Growth. $(PA)_2PbBr_4$ (1). Microcrystals of 1 were synthesized by adding Pb(CH₃COO)₂·3H₂O (1 mmol, 379 mg) and PA (2 mmol, 174 mg) into 5 mL HBr solution (40% in water). The mixture was heated to boil under a constant magnetic stirring. After a colorless solution was obtained, the heating and stirring was stopped, and the mixture solution was left on the hotplate to cool to room temperature. Then colorless crystal plates were obtained. $(R/S-PPA)(PA)PbBr_4$ (2R/2S). The synthesis for 2R (or 2S) is same as that of 1 by simply replacing 50% of PA with *R*-PPA (or *S*-PPA) (*i.e.*, PA (1 mmol, 87 mg) + *R*-PPA (1 mmol, 135 mg)). After the solution cooled to room temperature, the plate-like white microcrystals of 2R or 2S were obtained. The bulk single crystals of 2R were grown from its HBr saturated solution containing stoichiometric raw chemicals through a slow temperature-cooling process in a program-controlled oven. The temperature range is 80°C to room temperature, while the decreasing rate was 1°C per day.

Film Preparation. The films of 2R/2S on silica substrates were fabricated using a spin-coating technique. 0.15 g powders of 2R (or 2S) were dissolved in 0.66 g DMF, and then 2 droplets of 2R (or 2S) were dropped on the substrate. A rotate speed of 2,500 rpm and a holding time of 20 s were adopted. After coating, the films on silica were transferred on a hotplate of 80°C and kept for 5 min.

Single-Crystal and Powder X-Ray Diffraction (XRD). Single-crystal XRD measurements for 1, 2R, and 2S were performed on a Rigaku XtaLAB Synergy R HyPix diffractometer with Mo K α ($\lambda = 0.71073$ Å). The crystal structures were solved by the direct method and refined by the full-matrix method based on F^2 using the Olex2 software. Powder XRD patterns were measured on a Rigaku Miniflex 600 X-ray diffractometer in the 2θ range from 5° to 40° with a step length of 0.02°. CCDC 2252913-2252915 contain the supplementary crystallographic data for this paper.

Optical Property Measurement. The absorption spectra of 1 and 2*R*/2*S* powders were recorded on a PerkinElmer Lambda 950 ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer from 200 to 800 nm with an interval of 1 nm.

Circular Dichroism (CD) Measurement. The 2*R*/2*S* films were fabricated for CD measurement. The CD spectra of 2*R*/2*S* were measured on a Bio-Logic MOS450 CD spectrometer. The pure silica substrate was used as the reference.

Photodetection. The **2**R single-crystal device was used for photodetection. A two-terminal planar structure was adopted with Ag electrodes depositing on the *ab* plane (Figure **S9**). The current-voltage (*I-V*) traces and current-time (*I-t*) curves were measured on a Keithley 6517B electrometer. The Thorlabs 405 nm fiber-pigtailed laser diode was used as the light source. The incident light power was calibrated using a PM100D optical power meter of Thorlabs. The circularly polarized lights were generated by using a polarizer and quarter-wave plates (Thorlabs).

Density Functional Theory (DFT) Calculation. The single-crystal structure of **2R** at 300 K was used for the theoretical calculations. The DFT calculations were carried out with the CASTEP program in the Materials Studio software. The exchange-correlation effects were treated by the Perdew-Burke-Ernzerhof function (PBE) in the generalized gradient approximation (GGA). A cutoff energy of 820 eV was used, and the *k*-space integration was carried out with a Monkhorst-Pack grid of $6 \times 6 \times 2$. The norm-conserving pseudopotential was used to describe the interactions between the ionic cores and electrons. The spin-orbital coupling was not included. The orbital electrons of Pb ($5d^{10}6s^26p^2$), Br ($4s^24p^5$), C ($2s^22p^2$), N ($2s^22p^3$), and H ($1s^1$) were regarded as valence electrons.

Figures

Figure S1. The hydrogen bonds in 1 crystal structure. (Pb: green, Br: yellow, N: Blue; C: Grey; H: White)

Figure S2. Experimental and simulated powder XRD patterns for (a) 2R and (b) 2S.

Figure S3. The SHG signals for 2*R*, 2*S*, and KH₂PO₄ (KDP) powders.

Figure S4. The hydrogen bonds in 2R crystal structure (unit: Å). (Pb: green, Br: yellow, N: Blue; C: Grey; H: White)

Figure S5. The absorption spectrum and estimated optical bandgap (inset) of 1.

Figure S6. The absorption spectrum and estimated optical bandgap (inset) of 2S.

Figure S7. The interlayer distance for 1 and 2*R*. (Pb: green, Br: yellow, N: Blue; C: Grey)

Figure S8. The PXRD patterns of 2R and 2S films. Insets are corresponding photons for 2R and 2S films, respectively.

Figure S9. Schematic illustration of 2*R* single-crystal photodetector.

Tables

Identification code	1	2 <i>R</i>	2.5
Formula	$(C_5H_{14}N)_2PbBr_4$	$(C_9H_{14}N)(C_5H_{14}N)PbBr_4$	(C ₉ H ₁₄ N)(C ₅ H ₁₄ N)PbBr ₄
Temperature [K]	100	300	300
Weight	703.14	751.21	751.21
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
<i>a</i> [Å]	14.4011(5)	8.0160(3)	8.0152(3)
<i>b</i> [Å]	8.2390(2)	8.4161(4)	8.4073(3)
<i>c</i> [Å]	8.3208(2)	34.5711(19)	34.5750(15)
α[°]	90	90	90
β[°]	94.932(3)	90	90
γ [°]	90	90	90
Volume [Å ³]	983.61(5)	2332.29(19)	2329.88(16)
ho [g cm ⁻³]	2.374	2.139	2.142
Ζ	2	4	4
<i>F</i> (000)	648	1392	1392
Radiation	Mo K α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	<i>R</i> ₁ =2.96%, <i>wR</i> ₂ =7.36%	R_1 =4.58%, wR_2 =10.48%	R_1 =4.60%, wR_2 =11.10%
Final R indexes [all data]	R_1 =3.63%, wR_2 =7.61%	R_1 =6.06%, wR_2 =10.99%	R_1 =5.97%, wR_2 =11.72%
GOF	1.051	1.051	1.107

Table S1. Crystal data and refinement details for 1 and 2*R*/2*S*.