Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Charge-shifting Polyplex as a viral RNA Extraction Carrier for Streamlined Detection of Infectious Viruses

Younseong Song,^a[†] Jayeon Song,^b[†] Seongeun Kim^a, Hyowon Jang^b, Hogi Kim^a, Booseok Jeong^a, Nahyun Park^a, Sunjoo Kim,^c Dongeun Yong,^d Eun-Kyung Lim,^{b,e,f} Kyoung G. Lee,^{g*} Taejoon Kang,^{b,f*} and Sung Gap Im^{a*}

a. Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea sgim@kaist.ac.kr

b. Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea kangtaejoon@kribb.re.kr

c. Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea

d. Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

e. Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

f. School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

g. Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC),

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea kglee@nnfc.re.kr †These authors contributed equally to this work.

Address correspondence to: sgim@kaist.ac.kr (S.G.I); kangtaejoon@kribb.re.kr (T.K.);

kglee@nnfc.re.kr (K.G.L)

Figure S1. TEM micrograph of RNA and polyplex with the N/P ratio of 200.

Figure S2. Quantitative analysis of pDMAEA coating on a PCR tube. pDMAEA coating mass of 20 tubes. The coating mass is determined by the concentration of pDMAEA solution obtained by introducing 20 μ L of distilled water to the pDMAEA-coated tubes. The results demonstrated a high level of consistency, with a range of error of 7.2% regarding the coating mass. This level of variation indicates that the iCVD process yields highly reproducible coating thicknesses on the PCR tubes.

Figure S3. qRT-PCR inhibitory test of pDMAEA. (a) qRT-PCR amplification curves and (b) the corresponding C_t values of template RNA (0.1 to 10 ng/µL) in pDMAEA-coated and pristine tubes. (c) Summary of qRT-PCR results using pDMAEA-coated and pristine tubes. PCR efficiency (%)* = { $(10^{-1/slope} - 1) \times 100$ }.

Figure S4. RNA capture efficiency of the pDMAEA-coated tube as a function of centrifuge speed (n = 3, error bar = standard deviation).

Figure S5. Self-catalyzed hydrolysis mechanism of DMAEA. 5-membered ring or 7-m embered ring conformation can activate the ester moiety and make it more susceptible to nucleophilic attack by hydroxyl ions under basic and acidic conditions, respectively. ^[1]

Figure S6. Real-time ¹H NMR analysis of pDMAEA in buffered D₂O solution at 600 MHz. (a) Hydrolysis reaction of a pDMAEA. Chemical structure of a pDMAEA is denoted by the hydrogen positions. (b, c) ¹H NMR spectra of pDMAEA at pH 8.0 for 25 min with 5 min intervals at (b) 25 °C and (c) 50 °C.

Figure S7. Linear first-order kinetic plots of the initial stages of pDMAEA hydrolysis. (a, b) Hydrolysis occurs in buffered D_2O solutions at pH 8.0 at (a) 25 °C and (b) 50 °C. Inset of (a) is extrapolate plot for the half-life of the hydrolysis at 25 °C.

Figure S8. Potentiometric pH back-titration analysis of pDMAEA before and after hydrolysis. Blue and pink areas indicate tertiary amine group and acrylic acid group.

Figure S9. Comparison of extraction rates between the QIAamp Viral RNA Mini Kit (Qiagen) and PAD-qRT-PCR method at different initial RNA amounts (3 ng to 60 ng). Statistical significance is evaluated using Two sample t-test ($^{Non-significance} (NS)P > 0.05$, *P < 0.05, *P < 0.01, ***P < 0.001)

Figure S10. Receiver operating characteristic (ROC) curve generated from the clinical sample data of Figure 4e.

Figure S11. PAD-qRT-PCR amplification curves corresponding to Figure 5c.

Figure S12. PAD-qRT-PCR amplification curves corresponding to Figure 5d-h.

Figure S13. PAD-qRT-PCR results by varying input sample volume from 3 μ L to 60 μ L. Target H1N1 RNA concentration was 1 ng/ μ L. C_t value from 30 μ L sample is the lowest.

Figure S14. Compatibility of pDMAEA-coated tube with rapid qRT-PCR kit (TaqPathTM 1step Multiplex Master Mix). (a, b) PAD-qRT-PCR results under the fast qRT-PCR condition for the detection of (a) SARS-CoV-2 (10^5 PFU/mL) and (b) clinical samples (sample numbers are referred from Table S4).

Target	Name	Position	Sequence (5' → 3')
	FP	13342–13362	CCC TGT GGG TTT TAC ACT TAA
ORF1 gene	Probe	13377–13404	FAMª – CCG TCT GCG GTA TGT GGA AAG GTT ATG G – BHQ1 ^b
	RP	13442–13460	ACG ATT GTG CAT CAG CTG A
	FP	29125–29144	AAA TTT TGG GGA CCA GGA AC
N gene	Probe	29222–29241	FAM – ATG TCG CGC ATT GGC ATG GA – BHQ1
	RP	29263–29282	TGG CAG CTG TGT AGG TCA AC
	FP	3064–3083	ATY° AGR° GCT GCW° GAA ATC AG
S gene	Probe	3201-3220	FAM – ATG AGG TGC TGA CTG AGG GA – BHQ1
	RP	3281-3300	CCW TCA TGA CAA ATD° GCW GG
	FP	22928-22952	CCT TTT GAG AGA GAT ATT TCA ACT G
Delta	Probe	22960-22980	FAM – TCA GGC CGG TAG CAA ACC TTG – BHQ1
	RP	23056-23079	AGT ACT ACT ACT CTG TAT GGT TGG
	FP	26503-26521	TGG CAG GTT CCA ACG GTA C
Omicron	Probe	26454-26568	FAM – AGC TCC TTG AAG AAT GGA ACC TAG – BHQ1
	RP	26579-26604	GAA GAC AAA TCC ATG TAA GGA ATA GG
	FP	49-68	TCA GGC CCC CTC AAA GCC GA
H1N1	Probe	72-93	FAM – CGC GCA GAG ACT GGA AAG TGT C – BHQ1
	RP	188-207	GGG CAC GGT GAG CGT GAA CA
	FP	591-614	AGG GGA AGA CCA AAT TAC TGT TTG
IBV	Probe	629-656	FAM – ATA ACA AAA CCC AAA TGA AGA GCC TCT A– BHQ1
	RP	676-697	CAT TAG CAG ATG AGG TGA ACT T

 Table S1. Primer sequences used in this study.

Number	Virus	Sample type	C _t value
1	H1N1	Sputum	3.98
2	H1N1	Sputum	6.16
3	H1N1	Sputum	6.75
4	H1N1	Sputum	7.85
5	H1N1	NPS^{a}	9.65
6	H1N1	NPS	12.17
7	H1N1	Sputum	12.62
8	H1N1	Sputum	14
9	H1N1	Sputum	14.47
10	H1N1	Sputum	15.01
11	H1N1	Sputum	20.06
12	IBV	Sputum	5.98
13	IBV	Sputum	6.79
14	IBV	Sputum	6.79
15	IBV	Sputum	7.53
16	IBV	Sputum	8.12
17	IBV	Sputum	10.98
18	IBV	Sputum	12.15
19	IBV	Sputum	13.47
20	IBV	Sputum	16.41
21	Negative	NPS	N/A
22	Negative	NPS	N/A
23	Negative	NPS	N/A
24	Negative	NPS	N/A
25	Negative	NPS	N/A
26	Negative	NPS	N/A
27	Negative	NPS	N/A
28	Negative	NPS	N/A
29	Negative	NPS	N/A
30	Negative	NPS	N/A
31	Negative	NPS	N/A
32	Negative	NPS	N/A
33	Negative	NPS	N/A
34	Negative	NPS	N/A
35	Negative	NPS	N/A

 Table S2. Hospital results of clinical samples for influenza viruses.

Tech	LOD (cp/rxn)	Sensitivity	Specificity	Assay time (min)	Com patib ility	Variant detection
PAD-qRT-PCR	~ 10*	99.3% (144/145)	98.8% (79/80)	5+90 (extraction +qRT-PCR)	0	0
SWCNT-based extraction and RT-qPCR ^[2]	128	N/A†	N/A	60 + 90 (extraction + qRT-PCR)	0	Ο
RT-LAMP Harmony COVID-19 ^[3]	40	95% (39/41)	100% (4/4)	91 (extraction-free amplification)	X	0
SHINEv.2 ^[4]	1000	90.5% (38/42)	100% (30/30)	90 (extraction-free amplification)	Х	0
OIL-TAS + RT- qPCR or LAMP ^[5]	1000	100% (57/57)	100% (10/10)	30 + 30~50 (pretreatment + LAMP)	0	Х

Table S3. Comparison of detection methods for SARS-CoV-2. *1 PFU/mL ~ 1000 copies/mL^[6]

†Not available

		C _t value				
Number	Sample type –	RdRP	E	Ν	AVG	
1	NPS	8.3	8.7	N/A	8.50	
2	NPS	9.37	11.37	N/A	10.37	
3	NPS	10.14	11.57	N/A	10.86	
4	NPS	10.57	11.73	N/A	11.15	
5	NPS	10.59	12.03	N/A	11.31	
6	NPS	12.6	10.94	10.81	11.45	
7	NPS	11.69	12.27	N/A	11.98	
8	NPS	11.9	12.8	N/A	12.35	
9	NPS	11.56	11.9	13.8	12.42	
10	NPS	12.52	11.63	13.84	12.66	
11	NPS	11.13	12.88	16.52	13.51	
12	NPS	15.22	15.3	12.34	14.29	
13	NPS	15.36	12.78	15.09	14.41	
14	NPS	14.08	14.95	N/A	14.52	
15	NPS	14.35	15.33	15.45	15.04	
16	NPS	14.71	15.65	N/A	15.18	
17	NPS	14.7	15.81	N/A	15.26	
18	NPS	14.58	15.97	N/A	15.28	
19	NPS	13.35	13.69	19.05	15.36	
20	NPS	14.98	15.93	N/A	15.46	
21	NPS	15.28	15.85	N/A	15.57	
22	NPS	15.16	16.24	N/A	15.70	
23	NPS	15.24	16.25	N/A	15.75	
24	NPS	16.2	16.81	N/A	16.51	
25	NPS	7.56	25.52	N/A	16.54	
26	NPS	15.35	16.73	19.04	17.04	

Table S4. Hospital results of clinical samples for WT SARS-CoV-2.

		C _t value				
Number	Sample type —	RdRP	Ε	Ν	AVG	
27	NPS	15.47	16.6	19.48	17.18	
28	NPS	18.68	15.7	18.4	17.59	
29	Sputum	18.44	16.2	18.93	17.86	
30	NPS	18.54	17.76	N/A	18.15	
31	NPS	19.21	17.96	N/A	18.59	
32	NPS	18.7	17.14	20.09	18.64	
33	NPSa	19.28	17.2	20.33	18.94	
34	NPS	18.97	17.63	20.6	19.07	
35	NPS	18.52	19.7	N/A	19.11	
36	NPS	18.81	19.31	19.34	19.15	
37	NPS	19.37	19.29	N/A	19.33	
38	NPS	17.96	19.05	22.5	19.84	
39	NPS	20.2	20.6	N/A	20.40	
40	Sputum	20.73	18.7	22.5	20.64	
41	Sputum	20.81	19.04	22.15	20.67	
42	NPS	21.59	19.16	21.91	20.89	
43	NPS	20.61	21.88	N/A	21.25	
44	Sputum	22.1	19.47	22.22	21.26	
45	NPS	21.27	22.41	N/A	21.84	
46	NPS	21.93	23.05	N/A	22.49	
47	Sputum	23.88	20.79	23.49	22.72	
48	NPS	22.37	23.07	N/A	22.72	
49	NPS	23.98	23.35	26.16	24.50	
50	NPS	24.58	25.26	N/A	24.92	
51	NPS	25.02	23.34	27.12	25.16	
52	NPS	25.11	26.1	N/A	25.61	
53	NPS	25.26	26.53	N/A	25.90	

Number		C _t value				
	Sample type –	RdRP	Ε	Ν	AVG	
54	NPS	27.3	24.34	27.02	26.22	
55	NPS	26.47	26.5	N/A	26.49	
56	NPS	26.8	27.56	N/A	27.18	
57	NPS	27.36	27.07	N/A	27.22	
58	NPS	27.15	27.38	N/A	27.27	
59	NPS	26.19	27.26	33.01	28.82	
60	NPS	28.73	29.27	N/A	29.00	
61	NPS	28.24	28.84	30.22	29.10	
62	NPS	29.19	29.06	N/A	29.13	
63	NPS	29.95	28.73	29.16	29.28	
64	NPS	30.17	30.04	N/A	30.11	
65	NPS	31.57	31.11	32.77	31.82	
66	NPS	31.43	32.7	N/A	32.07	
67	Sputum	32.7	30.94	32.58	32.07	
68	Sputum	33.21	30.61	33.11	32.31	
69	Sputum	33.11	30.97	33.45	32.51	
70	Sputum	33.11	30.97	33.45	32.51	
71	NPS	33.29	33.5	33.64	33.48	
72	Sputum	34.58	33.32	34.44	34.11	
73	NPS	35.48	35.33	N/A	35.41	
74	NPS	36.38	35.49	38.86	36.91	
75	NPS	38.85	37.83	37.7	38.13	
76	NPS	N/A	N/A	N/A	N/A	
77	NPS	N/A	N/A	N/A	N/A	
78	NPS	N/A	N/A	N/A	N/A	
79	NPS	N/A	N/A	N/A	N/A	
80	NPS	N/A	N/A	N/A	N/A	

Number		C _t value				
	Sample type –	RdRP	Ε	Ν	AVG	
81	NPS	N/A	N/A	N/A	N/A	
82	NPS	N/A	N/A	N/A	N/A	
83	NPS	N/A	N/A	N/A	N/A	
84	NPS	N/A	N/A	N/A	N/A	
85	NPS	N/A	N/A	N/A	N/A	
86	NPS	N/A	N/A	N/A	N/A	
87	NPS	N/A	N/A	N/A	N/A	
88	NPS	N/A	N/A	N/A	N/A	
89	NPS	N/A	N/A	N/A	N/A	
90	NPS	N/A	N/A	N/A	N/A	
91	NPS	N/A	N/A	N/A	N/A	
92	NPS	N/A	N/A	N/A	N/A	
93	NPS	N/A	N/A	N/A	N/A	
94	NPS	N/A	N/A	N/A	N/A	
95	NPS	N/A	N/A	N/A	N/A	
96	NPS	N/A	N/A	N/A	N/A	
97	NPS	N/A	N/A	N/A	N/A	
98	NPS	N/A	N/A	N/A	N/A	
99	NPS	N/A	N/A	N/A	N/A	
100	NPS	N/A	N/A	N/A	N/A	
101	NPS	N/A	N/A	N/A	N/A	
102	NPS	N/A	N/A	N/A	N/A	
103	NPS	N/A	N/A	N/A	N/A	
104	NPS	N/A	N/A	N/A	N/A	
105	NPS	N/A	N/A	N/A	N/A	
106	NPS	N/A	N/A	N/A	N/A	
107	NPS	N/A	N/A	N/A	N/A	

Number	Sample type –	RdRP	Е	Ν	AVG
108	NPS	N/A	N/A	N/A	N/A
109	NPS	N/A	N/A	N/A	N/A
110	NPS	N/A	N/A	N/A	N/A
111	NPS	N/A	N/A	N/A	N/A
112	NPS	N/A	N/A	N/A	N/A
113	NPS	N/A	N/A	N/A	N/A
114	NPS	N/A	N/A	N/A	N/A
115	NPS	N/A	N/A	N/A	N/A
116	NPS	N/A	N/A	N/A	N/A
117	NPS	N/A	N/A	N/A	N/A
118	NPS	N/A	N/A	N/A	N/A
119	NPS	N/A	N/A	N/A	N/A
120	NPS	N/A	N/A	N/A	N/A
121	NPS	N/A	N/A	N/A	N/A
122	NPS	N/A	N/A	N/A	N/A
123	NPS	N/A	N/A	N/A	N/A
124	NPS	N/A	N/A	N/A	N/A
125	NPS	N/A	N/A	N/A	N/A
126	NPS	N/A	N/A	N/A	N/A
127	NPS	N/A	N/A	N/A	N/A
128	NPS	N/A	N/A	N/A	N/A
129	NPS	N/A	N/A	N/A	N/A
130	NPS	N/A	N/A	N/A	N/A
131	NPS	N/A	N/A	N/A	N/A
132	NPS	N/A	N/A	N/A	N/A
133	NPS	N/A	N/A	N/A	N/A
134	NPS	N/A	N/A	N/A	N/A
135	NPS	N/A	N/A	N/A	N/A

			C _t value			
number	Variant	Sample type -	RdRP	Е	AVG	
1	Delta	NPS	9.81	10.64	10.23	
2	Delta	NPS	10.42	10.13	10.28	
3	Delta	NPS	10.28	10.53	10.41	
4	Delta	NPS	10.35	10.54	10.45	
5	Delta	NPS	11.59	11.89	11.74	
6	Delta	NPS	12.32	12.53	12.43	
7	Delta	NPS	12.89	12.88	12.89	
8	Delta	NPS	13.38	13.41	13.40	
9	Delta	NPS	13.83	13.65	13.74	
10	Delta	NPS	13.65	13.92	13.79	
11	Delta	NPS ^a	14.09	13.58	13.84	
12	Delta	NPS	13.73	14.02	13.88	
13	Delta	NPS	13.81	13.98	13.90	
14	Delta	NPS	13.86	14.42	14.14	
15	Delta	NPS	13.72	15.13	14.43	
16	Delta	NPS	15.13	13.89	14.51	
17	Delta	NPS	14.25	15.10	14.68	
18	Delta	NPS	13.32	16.47	14.90	
19	Delta	NPS	15.06	15.17	15.12	
20	Delta	NPS	15.43	15.41	15.42	
21	Delta	NPS	16.17	15.50	15.84	
22	Delta	NPS	15.62	16.37	16.00	
23	Delta	NPS	16.27	16.30	16.29	
24	Delta	NPS	16.80	16.39	16.60	
25	Delta	NPS	17.02	16.25	16.64	
26	Delta	NPS	18.11	15.34	16.73	

 Table S5. Hospital results of clinical samples for WT and delta SARS-CoV-2.

Number			C _t value			
	Variant	Sample type –	RdRP	Ε	AVG	
27	Delta	NPS	16.85	17.54	17.20	
28	Delta	NPS	18.37	16.37	17.37	
29	Delta	NPS	16.83	18.02	17.43	
30	Delta	NPS	18.21	16.67	17.44	
31	Delta	NPS	18.36	16.58	17.47	
32	Delta	NPS	17.74	17.48	17.61	
33	Delta	NPS	17.48	18.23	17.86	
34	Delta	NPS	17.45	18.31	17.88	
35	Delta	NPS	19.65	16.41	18.03	
36	Delta	NPS	20.10	16.98	18.54	
37	Delta	NPS	18.56	18.80	18.68	
38	Delta	NPS	18.26	19.25	18.76	
39	Delta	NPS	19.15	19.00	19.08	
40	Delta	NPS	18.55	20.15	19.35	
41	Delta	NPS	19.21	19.56	19.39	
42	Delta	NPS	21.29	20.14	20.72	
43	Delta	NPS	20.04	21.40	20.72	
44	Delta	NPS	22.02	20.11	21.07	
45	Delta	NPS	21.06	21.23	21.15	
46	Delta	NPS	22.14	21.08	21.61	
47	Delta	NPS	23.79	20.82	22.31	
48	Delta	NPS	22.67	23.32	23.00	
49	Delta	NPS	24.28	22.19	23.24	
50	Delta	NPS	25.73	23.69	24.71	
51	Delta	NPS	25.24	25.27	25.26	
52	Delta	NPS	25.20	26.27	25.74	

N	Vari	Same la terra	C _t value		
Number	variant	Sample type –	RdRP	E	AVG
53	Delta	NPS	27.48	24.73	26.11
54	Delta	NPS	30.15	26.68	28.42
55	Delta	NPS	28.11	29.87	28.99
56	Delta	NPS	29.36	28.64	29.00
57	Delta	NPS	28.82	30.81	29.82
58	Delta	NPS	30.75	29.74	30.25
59	Delta	NPS	30.72	32.54	31.63
60	Delta	NPS	31.73	32.31	32.02
61	WT	NPS	9.37	11.37	10.37
62	WT	NPS	10.14	11.57	10.86
63	WT	NPS	10.57	11.73	11.15
64	WT	NPS	10.59	12.03	11.31
65	WT	NPS	11.13	12.88	12.01
66	WT	NPS	11.56	11.90	11.73
67	WT	NPS	11.69	12.27	11.98
68	WT	NPS	12.40	12.19	12.30
69	WT	NPS	12.52	11.63	12.08
70	WT	NPS	13.35	13.69	13.52

Number	¥7 4		C _t value		
	variant	Sample type –	RdRP	E	AVG
1	Omicron	NPS	14.81	14.68	14.75
2	Omicron	NPS	14.85	15.37	15.11
3	Omicron	NPS	15.24	15.96	15.60
4	Omicron	NPS	16.89	15.21	16.05
5	Omicron	NPS	16.77	16.95	16.86
6	Omicron	NPS	17.3	18.16	17.73
7	Omicron	NPS	22.08	20.77	21.43
8	Omicron	NPS	23.45	21.7	22.58
9	Omicron	NPS	23.98	24.67	24.33
10	Omicron	NPS	29.34	29.24	29.29
11	WT	NPS	9.37	11.37	10.37
12	WT	NPS	10.14	11.57	10.86
13	WT	NPS	10.57	11.73	11.15
14	WT	NPS	10.59	12.03	11.31
15	WT	NPS	11.13	12.88	12.01
16	WT	NPS	11.56	11.90	11.73
17	WT	NPS	11.69	12.27	11.98
18	WT	NPS	12.40	12.19	12.30
19	WT	NPS	12.52	11.63	12.08
20	WT	NPS	13.35	13.69	13.52

Table S6. Hospital results of clinical samples for WT and omicron SARS-CoV-2.

Table S7. Material cost in this assay, material cost per 1 batch (iCVD process), and cost per
100 reactions of PAD-qRT-PCR kit

Material cost				
	Materials	Amount	Price (\$)	
2-(Dimethylamino)ethyl acrylate (DMAEA, 98%, Merck, Germany)		500 mL	324	
Tert-butyl peroxide (TBPO, 98%, Merck, Darmstadt, Germany)		1 L	183	
8-strip PCR tube (Bio-rad, USA)		960 ea (a tube)	120	
8-strip PCR cap (Bio-rad, USA)		960 ea (a tube)	46.0	
	Nuclease-free water (Merck, Germany)	10 L	63.0	
	EDTA, Disodium Salt, Dihydrate (MW 292.2438 g/mol, Fisher Scientific, USA)	100 g	102.	
Lysis buffe r	Pierce [™] TCEP-HCl (MW 286.65 gram/mol, Thermo Scientific [™] , USA)	10 g	200	
	Proteinase K Solution (800 units/mL, NEB, USA)	800 ea	91.0	
	RiboLock RNase Inhibitor (40 U/µL, Thermo Scientific [™] , USA)	2500 ea	85.0	
	Total		1214	

Cost per iCVD 1 batch				
Materials	Amount	Price (\$)		
8-strip PCR tube	384 ea (a tube)	66.4		
DMAEA	2 mL	1.30		
TBPO	2 mL	0.366		
Total	384 ea (a tube)	68.1		
Cost per 100 reactions				
Components	Amount	Price (\$)		
pDMAEA-coated tube	100 ea (a tube)	17.7		
8-strip PCR cap	960 ea (a tube)	46.0		
Nuclease-free water	10 mL	0.0630		
Lysis buffer {1 mM EDTA, 100 mM TCEP-HCl, 100 µL Nuclease-free water, proteinase K (0.8 U/reaction), Rnase inhibitor (10 U/reaction)}	10 mL	43.7		
Total		107		

Name	Method	Material	Equipment	Cost/hundre d reactions (\$)
Sample	Our method	pDMAEA-coated tube, lysis buffer, nuclease-free water	Mini-centrifuge	107ª
Pretreatment method	Silica Spin Column-based RNA kit	QIAamp Viral RNA Mini Kit	Mini-centrifuge	628 ^{b,6}
	Magnetic bead- based RNA kit	NucleoMag® Pathogen	Magnet rack	441 ^{b,7}

Table S8. Estimated material and market cost for molecular diagnostics of SARS-CoV-2.

^a Estimated material cost

^b Approximate market cost

	PAD-qRT-PCR	Commercial kit ^b
Technology	pDMAEA-coated tube	Silica technology
Time	5 min	40 min
Cost/hundred reactions (\$)	107ª	682
Processing	Manual (1 centrifugation step)	Manual (4 centrifugation steps + 2 washing steps)
Recovery Yield	85%	90%
Main sample type	Liquid media	Liquid media
Sample amount	3~10 μL	140 µL
Elution Volume	25 μL (PCR mixture)	50 µL (distilled water)
Format	Tube	Spin columns
Applications	PCR, qPCR, real-time PCR, or other gene amplification methods	PCR, qPCR, real-time PCR, or other gene amplification methods

Table S9. Comparison of pDMAEA tube with a commercial extraction kit.

^a Estimated material cost

^b Commercial kit (QIAamp Viral RNA Mini Kit, 52904) was purchased from Qiagen

References

- P. Van de Wetering, N. Zuidam, M. Van Steenbergen, O. Van Der Houwen, W. Underberg, W. Hennink, *Macromolecules* 1998, 31, 8063.
- [2] S. Jeong, E. González-Grandío, N. Navarro, R. L. Pinals, F. Ledesma, D. Yang, M. P. Landry, ACS nano 2021, 15, 10309.
- [3] N. Panpradist, E. C. Kline, R. G. Atkinson, M. Roller, Q. Wang, I. T. Hull, J. H. Kotnik,
 A. K. Oreskovic, C. Bennett, D. Leon, *Science Advances* 2021, 7, eabj1281.
- [4] J. Arizti-Sanz, A. D. Bradley, Y. B. Zhang, C. K. Boehm, C. A. Freije, M. E. Grunberg,
 T.-S. F. Kosoko-Thoroddsen, N. L. Welch, P. P. Pillai, S. Mantena, *Nature Biomedical Engineering* 2022, 1.
- [5] D. S. Juang, T. D. Juang, D. M. Dudley, C. M. Newman, M. A. Accola, W. M. Rehrauer,
 T. C. Friedrich, D. H. O'Connor, D. J. Beebe, *Nature Communications* 2021, 12, 4317.
- [6] K. Uhteg, J. Jarrett, M. Richards, C. Howard, E. Morehead, M. Geahr, L. Gluck, A. Hanlon, B. Ellis, H. Kaur, *Journal of Clinical Virology* 2020, 127, 104384.